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Abstract: Tsallis and Kaniadakis entropies are generalizing the Shannon entropy and have it as their limit when 

their entropic indices approach specific values. Here we show some relations existing between Tsallis and 

Kaniadakis entropies. We will also propose a rigorous discussion of the conditional Kaniadakis entropy, deduced 

from these relations.    
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1. Introduction 

In information theory, measures of information can 

be obtained from the probability distribution of some 

events contained in a sample set of possible events. 

These measures are the entropies. 

In 1948 [1], Claude Shannon defined the entropy H 

(Greek letter Eta), of a discrete random variable X, as 

the expected value of the information content: H(X)   

 i ii ))I(xp(x  i ibi )p(xlog)p(x [2]. In 

this expression, I is the information content of X, the 

probability of i-event is ip  and b is the base of the 

used logarithm. Common values of the base are 2, 

Euler’s number e, and 10. 

Besides Shannon entropy, several other entropies are 

used in information theory; here we will consider the 

generalized entropies of Tsallis and Kaniadakis (also 

known as κ-entropy) entropies [2-4]. We will show 

relations between them. We will also propose a 

rigorous discussion of the conditional Kaniadakis 

entropy, deduced from these relations.    

 

2. The entropies 

In the following formulas we can see how the 

abovementioned  entropies (Shannon, Tsallis and 

Kaniadakis) are defined, with a corresponding choice 

of measurement units equal to 1:  
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In (2),(3) we have entropic indices q  and  , and: 
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Let us consider the joint entropy H(A,B) of two 

independent subsystems A,B. We have: 
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Note that for the generalized additivity of  -entropy, 

we need another  function containing probabilities 

(see [5] and references therein). 
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3. Basic relations between K and T 

Let us consider  -entropy K. We have that:  
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In (7) we used the Tsallis entropies:  

 

κ

1
p

κ

1
κ)1T(q

;
κ

1
p

κ

1
κ)1T(q

i

κ1
i

i

κ1
i









 

 

In fact, we have:  
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Eq.(7) is a simpler form of an expression given in 

[6,7]. However, besides this relation, because of the 

generalized additivity possessed by the Kaniadakis 

entropy, we need also another relation, concerning 

function  . It is:  

 











 
κ

2
TT

2

κ
(8) κ1κ1κ  

  

In fact: 
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In (7) and (8), we have the Kaniadakis functions 

expressed by the Tsallis entropy. However, we can 

also write T expressed by means of Kaniadakis 

entropy.  
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And then: 
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Let us have: q1κ  .  
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We can have also: 
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So that: 
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Let us have: 1κ  q . We have again Eq.10. 

 

4. Generalized additivity 

Let us consider two subsystems A and B. We can find a relation between the joint Tsallis and Kaniadakis entropies. 

Using (10), we obtain:  
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When  the subsystems are independent, for Tsallis entropy we have Eq.5, and then: 
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To continue, we can assume:   
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This relation was proposed in [8], but it is  clear that it can obtained from (13): 

  

q1

(B)

q1

(A)
q)(1(B)(A)K(B)(A)K(B)(A)Kq)K(1

q1

B)(A,
B)(A,K

q1q1
q1q1q1q1q1q1

q1
q1





















 

 

Remembering that (B)(A)K(B)(A)KB)(A,K q1q1q1q1q1   , we must have (14) to fulfil (13).   

 

6. Conditional entropy 

In a previous paper [9] we proposed, in the framework of a discussion on mutual entropy, an expression for the 

conditional Kaniadakis entropy. If the entropic index has a low value, the formula we find in [9] can be considered 

an approximation of the expression that we are here deducing. Let us start from the conditional Tsallis entropy [10]: 
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Then (B)TB)(A,T])B(q)T(1B)[1|(AT  qqqq  . From now on, we do not write the indices of  

Kaniadakis functions. However, remember that they exist and have value (1−q). Let us use (10), written for joint and 

conditional entropies: 
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We have: 
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From this equation we find: 
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We can divide (18) in two equations: 
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Let us note that (19) and (20) are generalizing (6) and (14). In both (19),(20) we have conditional functions  

B)|(A,B)|K(A  . Then, the rigorous expression of Kaniadakis conditional entropy is:  
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 In the case we are using the entropic index with a low value, this expression is approximated by:  
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The discussion in [9] can be proposed again using (21). For instance, if we consider the mutual entropy (without 

renormalization): 
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When A and B are independent, (A)B)|(A   and then the mutual information is zero. Moreover, when we 

have a small value of the entropic index, function   is equal to 1.  
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