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Abstract: Cloud computing platforms have become increasingly popular across various industries, offering publicly accessible computing, 
storage, and network solutions to meet the demands of building, scaling, and managing applications. A critical component of these platforms is 
the recommendation system, which significantly influences customer experience and platform revenue. However, variations in customer 
behavior and product attributes result in different recommendation scenarios across platforms. One key scenario faced by customers of cloud 
computing platforms is configuration selection. In this paper, we present an innovative approach to detect potentially misconfigured cloud 
servers in such scenarios. Our method utilizes weakly supervised learning, using server lifetime as a weak signal to guide the configuration 
anomaly detection model. By implementing this configuration check, we can prevent customers from purchasing misconfigured products, thus 
promoting a stable and satisfactory relationship between cloud computing platforms and their customers. 
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1 Introduction 

Cloud computing platforms encompass a variety of 

services, including Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software as a 

Service (SaaS), each providing complementary 

functionalities. Similar to online shopping platforms, 

cloud computing platforms have three key 

contributors: customers, products, and providers. On 

large platforms like AWS, the provider is the same 

for all cloud services. Online shopping platforms 

typically rely on multi-objective recall strategies, 

along with embedding learning and knowledge 

graph techniques, to generate customized and 

intelligent recommendations. However, the 

scenarios on cloud computing platforms differ 

significantly.  

Users of cloud computing services often stick to a 

single type of cloud product and show little interest 

in products from other categories. The main 

products on cloud platforms are servers and storage 

solutions, which generally require users to select 

configurations during the purchasing process. When 

a customer attempts to purchase (or rent) a cloud 

server, they must configure various parameters, such 

as the number of CPU units, memory size, disk 

storage size, operating system, and GPU type. 

However, customers often possess varying levels of 

technical knowledge, and sometimes they fail to 

select appropriate configurations. For instance, if a 

student intends to rent a GPU cloud server to train a 

machine learning model and selects 8 CPU units, 

32GB of memory, a Tesla T4 GPU, but only 30GB 

of disk storage, numerous errors due to insufficient 

disk space are likely to occur. Once a customer 

purchases a misconfigured cloud computing 

product, they may need to shut down the current 

server instance and start a new one soon after, 

leading to unsatisfactory outcomes such as 

additional charges and wasted effort in redoing work 

saved on the old server. 

In this paper, we highlight the limitations of existing 

methodologies for anomaly detection, specifically 

statistical and unsupervised learning approaches, 

when applied to the scenario of configuration 

selection. Our data is not time-sensitive, thus time 

series approaches are not considered. Statistical 

approaches such as Z-score and Inter-Quartile Range 

(IQR) are limited to single continuous features, with 

Z-score further assuming a normal distribution of 

the feature. Existing unsupervised learning methods, 

including DBSCAN [1], LOF [2], and One-class 

SVM [3], detect anomalies based on distance and 

density measures, which are not applicable to 

categorical features. Additionally, these methods 

suffer from the curse of dimensionality, leading to 

computational inefficiency. These limitations are 

discussed in detail in Section 2. 

We propose a weakly supervised approach to 

anomaly detection, using server lifetime as a weak 

signal. Server lifetime is defined as the duration 

between server creation and shutdown times. To 

achieve this, we first employ a CatBoost [4] 

regression model to predict server lifetime based on 

basic server configurations and user group 

information, with differences among user groups 

outlined in Section 4. We then apply the Isolation 
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Forest [5] unsupervised anomaly detection model, 

incorporating predicted server lifetime as one of its 

descriptive features, to identify misconfigured 

servers. The Isolation Forest algorithm relies on 

predicted anomaly scores to detect anomalies, and 

we introduce an additional constraint on predicted 

server lifetime to filter anomalies and mitigate 

minority bias. Our approach offers several 

advantages: (i) it incorporates both continuous and 

categorical features, considering differences among 

user groups, (ii) it leverages server lifetime as a 

weak signal to enhance model performance, and (iii) 

it is scalable and computationally efficient. Detailed 

methodology and results are presented in Section 3. 

  

2 Related Work 

2.1 Statistical Approach for Anomaly Detection 

The Z-score measures how far a data point is away 

from the mean as a signed multiple of the standard 

deviation; large absolute values of the Z-score 

suggest an anomaly. Let   be a descriptive 

feature, assume   follows Normal Distribution,   ̅ 

represents its mean and    represents its standard 

deviation, then we have Z-score defined as: 

   
    ̅

  

                               ( ) 

A Z-score of 3 is commonly used as the threshold 

above which it indicates outliers, since according to 

Normal Distribution, 99.7% of the data points lie 

between +/- 3 standard deviations. As we can see, 

using Z-score is a very naïve approach, since it 

assumes normal distribution, which is not always 

true.  

 

Figure 1: Probability Density Function of Normal Distribution 

Marked with Standard Deviations. 

The Inter-Quartile Range is a measure of statistical 

dispersion
1
. It is defined as the difference between 

the 75
th

 and 25
th

 percentiles of the data. To calculate 

IQR, the data is divided into quartiles, denoted by 

   (the lower quartile, 25
th

 percentile),    (the 

median, 50
th

 percentile),    (the upper quartile, 75
th

 

percentile).  

                                                      
1 Statistical Dispersion: In statistics, dispersion (also called 

variability, scatter, or spread) is the extent to which a distribution 
is stretched or squeezed. 

                                              ( ) 

The interquartile range is often used to find outliers 

in data. Outliers here are defined as observations 

that fall below              or above     
        . In a boxplot, the highest and lowest 

occurring value within this limit are indicated by 

whiskers of the box (frequently with an additional 

bar at the end of the whisker) and any outliers as 

individual points.  

 

Figure 2: Illustration of IQR on Outlier Detection in Boxplot. 

Compared to Z-score, the IQR method does not need 

to make assumption on statistical distribution of the 

feature. Here, 1.5 is a threshold that we can adjust. 

However, it still can deal with only one single 

feature at a time.  

 

2.2 Unsupervised Machine Learning Approaches 

for Anomaly Detection 

2.2.1 Distance-based Method: One-class SVM 

Supervised anomaly detection requires labelled 

dataset that indicates whether a record is “normal” 

or “abnormal”, while unsupervised approach deals 

with unlabeled dataset which assumes the majority 

of data are “normal” and tries to find data which are 

very different from normal ones as anomalies. 

Statistically, we use distance to describe how 

different one sample is from the other – similar 

points should be close in distance. Euclidean 

distance [7] and Manhattan distance [8] are two 

most commonly-used distance measures. Let 

   (           )  denotes the  -th datapoint, and 

     denotes the  -th feature of  -th datapoint (totally 

  features), we have: 

 (     )

 √∑(         )
 

 

   

(         )                  ( ) 

 (     )  ∑|         |

 

   

(         )              ( ) 

One-class Support Vector Machine (SVM) is one of 

the unsupervised anomaly detection algorithms 

based on distance. SVM [9] algorithm was primarily 

used for binary classification problems. Let 
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(     ) (     )  (     )  be the dataset, where 

      is the  -th input data and         is the 

label of   . SVM algorithm tries to create a 

hyperplane (decision boundary) to separate class    

and   by making projections on data, and support 

vectors are data points that are closer to the 

hyperplane and influence the position and 

orientation of the hyperplane. Let   be the weights 

(coefficients) and   be the bias, the hyperplane is 

defined by: 

                                    ( ) 

The hyperplane determines the margin between the 

classes, class -1 and 1 are on two different sides of 

the hyperplane, and the distance from the closest 

point from each class to the hyperplane is equal. 

That is, with proper scaling on such distance, we can 

have         for     and          

for     . The distance from a point    to the 

hyperplane         is given by: 

  
|      |

|| ||
                           ( ) 

If    is one of the support vectors, that is      or 

     , we have          , and then 

    || || . In SVM algorithm, we want to 

maximize   || || while subject to two constraints:  

1)         for     and 2)           

for     , which can be written together as 

  ( 
     )   . With Lagrange Multiplier [10], 

the optimization problem can be described as: 

        
 

 

 
‖ ‖ 

 ∑  (  ( 
     )

 

  )          ( ) 

In order to prevent the SVM classifier from over-

fitting with noisy data, slack variables    are 

introduced to generate soft margins, the idea of 

which is to allow some points sit on the wrong side 

of hyperplane. 

 

        
 

 

 
‖ ‖  ∑   (  ( 

     )  (    ))

 

  ∑  

 

                              ( ) 

One-class SVM [3] is similar, but instead of using a 

hyperplane to separate two classes of datapoints, it 

treats every datapoint as normal and uses a 

hyperplane to encompass all of them. Any datapoint 

that sit on the other side of hyperplane will be 

detected as anomalies.  

 

2.2.2 Density-based Methods: DBSCAN and LOF 

Density-based anomaly detection algorithms use the 

concept of “density” to define “abnormality” in a 

relative sense, starting from distance measures. One 

prominent method is Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) 

[1], which determines density by counting the 

number of points within a specified radius. In 

DBSCAN, each point is classified 

according to the following criteria: 

1) Core Point: A point is 

designated as a core point if it 

has at least a minimum 

number of neighboring points 

(MinPts) within the radius  . 

2) Border Point: A border point 

has fewer neighbors than 

MinPts within    but is within the  radius of a 

core point. 

3) Noise Point: Points that are neither core points 

nor border points are classified as noise points. 

The DBSCAN algorithm proceeds in two main steps 

after labeling the points: 

1) Create a separate cluster for each core point or 

group of connected core points (core points are 

considered connected if they are within   of 

each other). 

2) Assign each border point to the cluster 

associated with its nearest core point. 

While DBSCAN is widely used for clustering, it 

also effectively identifies anomalies by classifying 

noise points as anomalies, and treating all other 

points as normal. This dual functionality makes 

DBSCAN a versatile tool for both clustering and 

anomaly detection tasks. 

 

Figure 3: An Example Illustrating the Density-Based DBSCAN 

Clustering Method Applied to SMLM2 Data. 

                                                      
2 SMLM: Single-molecule localization microscopy describes a 
family of powerful imaging techniques that dramatically improve 
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Local Outlier Factor (LOF) [2] algorithm uses a 

different measure of density. Below are some 

important terminologies associated with LOF: 

1) k-distance: is the distance between the point 

and its k-th nearest neighbor. 

2) k-neighbors: the set of points that lie within 

the circle of radius of k-distance of  , 

denoted by   ( ). 

3) Reachability Distance: the maximum of k-

distance of    and the distance between    

and   ; reachability distance is not 

symmetric.  

   (     )

    {          (  )  (     )}               ( ) 

4) Local Reachability Density:  

     (  )

 
 

 
|  (  )|

∑    (     )     (  )

                  (  ) 

5) Local Outlier Factor: 

    (  )

 

 
|  (  )|

∑     (  )     (  )

    (  )
                (  ) 

If the point is not an outlier (inlier), the ratio of 

average local reachability density (LRD) of 

neighbors is approximately equal to the local 

reachability density of a point, because the density 

of a point and its neighbors are roughly equal. In 

that case, LOF value is nearly equal to 1. On the 

other hand, if the point is an outlier, the LRD of a 

point is less than the average LRD of neighbors, 

then LOF value will be high.   

The main issues related to distance or density-based 

algorithm is curse of dimensionality, especially 

those involve in nearest neighbor search. 

Furthermore, distance measures cannot be computed 

on feature space with (non-ordinal) categorical 

features. For example, even if we use one-hot 

encoding [11] to convert season into four indicator 

variables, the differences (e.g. ,       -  
,       -  ,        -) among them do not make 

sense.  

 

2.2.3 New Modeling Concept: Isolation Forest 

Unlike the distance and density-based approaches [1, 

2, 3] we covered in Section 2.2.1 and Section 2.2.2 

which try to build a model of normal datapoints, the 

Isolation Forest explicitly isolates anomalous 

                                                                              
spatial resolution over standard, diffraction-limited microscopy 

techniques and can image biological structures at the molecular 
scale.  

datapoints. The Isolation Forest algorithm takes 

advantage of two quantitative properties of 

anomalous data points in a sample:  

1) Few: anomalies are the minority consisting 

fewer instances; 

2) Different: anomalies have attribute values 

that are very different from those of normal 

instances. 

According to those two properties, there is the 

tendency of anomalies in a dataset to be easier to 

separate from the rest of the sample, compared to 

normal points. In order to isolate a data point, the 

algorithm recursively generates partitions on the 

sample by randomly selecting an attribute and then 

randomly selecting a split value for the attribute, 

between the minimum and maximum values allowed 

for that attribute. Recursive partitioning can be 

represented by a tree structure named Isolation Tree.  

Given a dataset   *       +      , where   is 

the dimension of feature space. For subsample 

    , the Isolation Tree (iTree) is defined as data 

structure with the following properties:  

1) For each node    in the tree,   is either an 

external-node without child or an internal-

node with one “test” and exactly two 

daughter nodes    and   .  

2) A test at node   consists of an attribute   

and a split value   such that the test     

determines the traversal of a data point to 

either    or   .  

In order to build an iTree, the algorithm recursively 

divides    by randomly selecting attribute   and a 

split value  , until either the node has only one 

instance or all data at the node have the same values. 

When the iTree is fully grown, each point in   is 

isolated at one of the external nodes. Intuitively, 

anomalies are those with the smaller path length in 

the tree, where the path length  (  ) of point      

is defined as the number of edges    traverses from 

the root node to get to an external node.  

The algorithm for computing the anomaly score of a 

data point is based on the observation that the 

structure of iTrees is equivalent to that of Binary 

Search Trees (BST) [12]: a termination to an 

external node of the iTree corresponds to an 

unsuccessful search in the BST. As a consequence, 

the estimation of average  ( )  for external node 

terminations is the same as that of the unsuccessful 

searches in BST, that is: 

 ( )

 {
  (   )  

 (   )

 
    

     
     

                   (  ) 
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where   is the testing data size,   is the size of the 

sample set, and   is the harmonic number, which 

can be estimated by  ( )    ( )   ,   
             is the Euler-Mascheroni constant. 

The value  ( ) represents the average path length 

of a BST built on   datapoints, which is used to 

normalize  ( )  and get an estimation of the 

anomaly score for a given instance  : 

 (   )   
  , ( )-

 ( )                                     (  ) 

where  , ( )-  is average value of  ( )  from a 

collection of iTrees.  

Anomaly detection with Isolation Forest is a process 

composed of two main steps: 

1) Use training data to build iTrees; 

2) Pass each instance in test set through all the 

iTrees and calculate the anomaly score 

If anomaly score is close to 1, then the instance is 

very likely to be an anomaly; if anomaly score is 

smaller than 0.5, then the instance is likely to be a 

normal point. Furthermore, if all the instances have 

an anomaly score of around 0.5, then it is safe to 

assume that the sample does not have any anomalies.   

Compared with distance and density-based methods, 

Isolation Forest has the following advantages: 

1) Isolation Forest has a lower linear time 

complexity and small memory requirement (no 

need to store the training dataset in order to 

compute nearest neighbors); 

2) All the iTrees in Isolation Forest are 

independent, which can be built on parallel or 

distributed environment to enhance training 

speed;  

3) Isolation Forest is able to deal with high 

dimensional data with irrelevant features 

including one-hot encoded categorical features; 

4) Isolation Forest can be trained with or without 

anomalies in the training set; 

5) Isolation Forest can provide detection results 

with different levels of granularity without re-

training.  

 

2.3 An Extension to GBDT with Categorical 

Features: CatBoost 

CatBoost is an improvement over GBDT (Gradient 

Boosting [13] Decision Tree), which applies special 

target statistics [15] (TS) technique to handle 

categorical features. The original GBDT method can 

be summarized like below: 

Given a dataset   *(     )+     , each    consists 

of   features, and    is the target, which can be 

either discrete labels or continuous response. Let 

 ( )  be the prediction function obtained from  -th 

iteration, which is updated in an additive manner: 

 ( )   (   )     ( ), where   is the step size (or 

learning rate), function  ( )  represents the base 

predictor (decision tree) chosen to minimize the 

expected loss  : 

 ( )        
 

 ( (   )   )        
 

 0 .   (   )( )   ( )/1                              (  ) 

If the loss function   is chosen to be least square 

loss, then gradient is given by: 
  

  
   (    ( )). 

Ignoring the constant part, the base decision tree 

 ( )  is actually fitting the residuals (gradient) 

  
( )        |

 ( )  (   )( ), this is where the name 

“Gradient” Boosting [14] comes from.  

Target statistics method is commonly used in 

boosting tree to deal with categorical features. Let 

     be the  -th feature of  -th sample, according to 

target statistics, it will be encoded as:  

     
∑  [         ]    

 
   

∑  [         ]
 
   

               (  ) 

which is just the weighted average of target 

responses with regards to each level in feature  . 

However, using TS method directly may result in 

prediction shift or target leakage issue. Therefore, 

CatBoost employed Ordered TS [4] method. For 

each sample   , we randomly shuffle all the samples, 

and use the samples before    to compute the TS. In 

order to reduce the variance, we perform the random 

sampling and TS computation at each iteration, and 

thus different random sequences of samples were 

used throughout the training process.  

In addition to ordered TS, CatBoost uses 

combinations of categorical features as additional 

categorical features which is capable of capturing 

high-order dependencies. CatBoost constructs such 

combination in a greedy way: for each split of a tree, 

CatBoost concatenates all the categorical features 

(including their combinations) already used for 

previous split in the current tree with all the 

remaining categorical features in the dataset, 

meanwhile those combinations are transferred into 

target statistics.  

 

2.4 Concept of Weakly Supervised Learning 

Weakly Supervised Learning encompasses scenarios 

where the quantity or quality of the supervision 

signal is significantly limited. According to Zhi-Hua 

Zhou [6], weak supervision can be categorized into 

three types. The first type is incomplete supervision, 

where only a limited portion of the training data is 

labeled, akin to the semi-supervised learning setting. 
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The second type is inexact supervision, which 

involves coarse-grained labels that lack sufficient 

detail. This typically occurs when the provided 

labels do not offer the necessary granularity. The 

third type is inaccurate supervision, which arises 

when the provided labels are not always accurate or 

true representations of the ground truth. 

In our context, we lack human-generated labels to 

definitively determine whether a server 

configuration is appropriate. However, we have 

observed that customers tend to shut down servers 

with inadequate configurations and replace them 

with new ones, leading to a short server lifetime. 

Therefore, server lifetime can serve as an indirect 

indicator of whether a server configuration is 

effective or not. By utilizing server lifetime as a 

weak supervision signal, we align with the scenario 

of inaccurate supervision, where the signal is not 

always perfectly aligned with the ground truth but 

still provides valuable guidance for anomaly 

detection. 

 

3 Methods 

Figure 4: Flowchart of Server Configuration Anomaly Detection. 

In this section, we describe the modeling details of 

the server configuration anomaly detection problem, 

including feature selection and model 

hyperparameter settings. Some experiments are done 

during this stage in order to validate the feature 

selection part, and we will show their results in 

Section 4. The process flowchart is given below:  

 

3.1 Server Lifetime Prediction 

The raw data comes from OneITLab cloud service 

platform, which contains 3147 servers, and 2904 of 

them is already shut down. We remove the servers 

that is marked as test server and only focus on those 

with clear record on creation and shutdown 

timestamp, which results in 1170 servers including 

common servers (CPU-only) and GPU servers. 

OneITLab is mainly used by students, professors, 

and researchers from Chinese Academy of Sciences. 

It offers cloud services like virtual server, storage, 

and clusters.  

We first extract the server configuration, user group, 

and server activity history information from the 

backend database, and selected the following 

descriptive features to train CatBoost regression 

model to predict the server lifetime: 

Table 1: Descriptive Features for Server Lifetime 

Prediction Model. 

Feature Name Variable Name Examples 

Number of CPUs cpu_num 4, 8 

Memory Size memory_num 16, 32 (GB) 

Disk Size storage_size 30, 64, 128 

(GB) 

Internet Bandwidth bandwidth 1, 100 (M) 

Operating System os_name Ubuntu, 

CentOS 

Number of GPUs gpu_num 0, 1, 2 

User Group group teacher, student, 

testbed user 

Architecture Type arch_type X86, ARM 

 

The model hyperparameters for CatBoost are 

configured as below: 

Table 2: Hyperparameter Configuration of CatBoost 

Regressor. 

Hyperparameter Name Value 

Categorical Feature Set group, os_name, arch_type 

Number of Iterations 1000 

Decision Tree Structure Symmetric 

L2 Regularization Strength 3 

Max Tree Depth 5 

Learning Rate 0.05 

Max Number of Leaves 64 

 

3.2 Server Configuration Anomaly Detection 

Model 

Minority Bias in anomaly detection models refers to 

the situation when samples from minority groups are 

more likely to be detected as anomalies, which results 

in high false positive rate.  In our scenario, few users 

ordered servers with very high configurations, e.g. 10 

CPU, 64GB RAM, 2048GB Disk. Since those server 

configurations appear to be rare in training data, 

unsupervised anomaly detection algorithms often 

detect them as anomalies, even though those server 
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configurations are reasonable for users with needs for 

large project or computationally intensive tasks. We 

employ two methods to handle the Minority Bias 

issue: 1) perform feature engineer to generate more 

representative descriptive features, 2) use predicted 

server lifetime as weak signal to filter the anomaly 

detection outcomes.  

1) Feature Engineering 

We use Pearson Correlation Coefficients [16] to 

analyze the correlation between continuous server 

configuration features described in Section 3.1. The 

formula of Pearson Correlation Coefficient is shown 

below: 

    

 
∑ (    ̅)(    ̅) 

   

√∑ (    ̅)  
    √∑ (    ̅)  

   

               (  ) 

which has a range of -1 to 1. The absolute value of 

Pearson Correlation Coefficient indicates the strength 

of linear correlation between variable   and variable 

 , and its sign represents if they are positively or 

negatively correlated.   

Table 3: Pearson Correlation Coefficients of Server 

Configurations 

 

cpu_nu

m 

memory_

num 

storage_n

um 

bandwid

th 

gpu_nu

m 

cpu_num 1.00 0.97 0.49 0.23 0.67 

memory_nu

m 
0.97 1.00 0.48 0.18 0.80 

storage_nu

m 
0.49 0.48 1.00 0.15 0.27 

bandwidth 0.23 0.18 0.15 1.00 0.00 

gpu_num 0.67 0.80 0.27 0.00 1.00 

 

Based on Pearson Correlation Coefficients, we find 

that those features are all positively correlated, which 

is consistent with that a computationally intensive 

task or large project usually requires all the 

configurations to be high. Intuitively, if someone 

selects a server with disk size smaller than memory 

size, it will be problematic. Therefore, as one of 

number of CPUs, memory size, and disk size 

increases, we expect the other to increase 

synchronically. One way to quantify this phenomenon 

is to use ratios, e.g. “disk size: memory size”, 

“memory size: number of CPUs”, and “disk size: 

number of CPUs”. If those kinds of ratios appear to 

be too high or too low, it is likely that corresponding 

configurations are abnormal.  

 

Figure 5: Histogram of “Disk Size: Memory Size”, “Memory Size: Number CPUs”, and “Disk Size: Number of CPUs” (from left to right) 

However, if we check the histogram of those ratios, 

we find that “disk size: memory size” and “disk size: 

number of CPUs” follow long-tail distribution, and it 

is hard to detect low ratios. This is because number of 

CPUs usually increases exponentially, e.g. 2, 4, 8, 16, 

and etc., and the selection of memory size and 

number of CPU are usually bundled together. 

However, we can perform log transformations on 

those distribution to make them close to Gaussian 

distribution: 

 

Figure 6: Histogram of “Log(Disk Size: Memory Size)”, “Log(Memory Size: Number CPUs)”, and “Log(Disk Size: Number of CPUs)” (from 

left to right) 

With log transformations, it is easier to detect both 

high and low ratios. Moreover, in log transformation, 

the order in ratios does not matter, that is “disk size: 

memory size” and “memory size: disk size” look 

similar, and thus we only need to include one of them 

as descriptive features. Therefore, we construct three 
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log-transformed ratio features using disk_num, 

memory_num, and n_cpu, together with bandwidth 

and predicted server lifetime for the anomaly 

detection model.   

 Table 5: Descriptive Features for Anomaly Detection 

Model 

Feature Name Variable Name 

Predicted Server Lifetime pred_lifetime 

Log(Memory Size: Number of CPUs) log_memory2cpu 

Log(Disk Size: Number of CPUs) log_disk2cpu 

Log(Disk Size: Memory Size) log_disk2memory 

Internet Bandwidth bandwidth 

 

2) Predicted Server Lifetime as Weak Signal 

We use the features in table to build the Isolation 

Forest model, with the following hyperparameters:  

Table 6: Hyperparameter Configuration of Isolation 

Forest Anomaly Detection Model 

Hyperparameter Name Value 

Use Bootstrap Sample or Not Yes 

Contamination Ratio 0.01 

Max Number of Features 1.0 

Number of iTrees 1000 

Max Server Lifetime 168 

Here, the Max Server Lifetime is an additional 

hyperparameter that we add to this model, which 

serves as a threshold for us to select the final 

anomalies. 168 is in the unit of hours, which indicates 

one week’s time (        ).   

The original Isolation Forest model outputs an 

anomaly score ranged from 0 to 1for each data point, 

and those with a score close to 1 are selected as 

anomalies. However, in order to avoid Minority Bias 

issue, we won’t select the server configurations with a 

predicted server lifetime more than one week as 

anomalies. This is because there should be a positive 

relation between server lifetime and customer’s 

satisfaction, and intuitively, the configurations that 

users get used to should be reasonable and not 

selected as anomalies.   

 

4 Experiments and Results 

4.1 The Difference in User Groups 

There are 6 user types in OneITLab’s dataset: (1) 

student, (2) testbed, (3) teacher, (4) research project 

leader, (5) admin, and (6) super admin, and those 

roles are not mutually exclusive – one user can have 

multiple roles. Table 7 shows the average 

configuration selected by users from different groups.  

 

Table 7: Average Configurations for Different User Group 

User Groups 
Average 

n_cpu 

Average 

memory_num 

Average 

bandwidth 

Average 

storage_num 

Number of 

Servers 

Student 6.87 15.80 1.41 95.98 717 

Testbed User 4.15 8.95 1.09 55.46 224 

Teacher 5.49 13.11 1.46 79.96 1012 

Research Project 

Leader 
7.21 17.19 10.85 130.24 1013 

Admin 5.00 12.98 0.95 51.85 324 

Super Admin 7.94 23.21 1.78 60.16 107 

 

As we can see from the table, research project leaders 

tend to choose servers with higher configurations than 

others while testbed user and admin usually select 

lower configurations.  

In addition, we use entropy to quantify the diversity 

of configuration selections for each user groups. 

Entropy measures the impurity of a set of elements, 

which is given by the formula: 

 ( )  ∑         

 

   

                        (  ) 

Assume   is a set of elements taking up to   values, 

       , then    is the probability that a randomly 

chosen element has a value of   ,      (    ). 

The higher the entropy, the higher diversity (impurity) 

of the list. Table shows the entropy in configurations 

of each user group. 
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Table 8: Entropy of Configurations for Different User 

Group 

User Groups 
n_cpu 
Entropy 

memory_n

um 

Entropy 

bandwidth 
Entropy 

storage_nu
m Entropy 

Student 1.27 1.18 0.59 1.10 

Testbed User 0.74 1.11 0.55 1.35 

Teacher 1.15 1.21 0.49 1.26 

Research 
Project Leader 

1.34 1.29 0.86 1.44 

Admin 0.89 0.78 0.45 0.31 

Super Admin 1.31 1.30 0.54 0.59 

We observed high diversity of configuration selection 

among research project leader and low diversity 

among admin and testbed users.  

 

4.2 Impact of Log Ratios 

In Section 3.2 we perform feature engineering, using 

the log transformations on configuration ratios to 

make it appear to follow Gaussian distribution. We 

argue that log transformation will make the patterns 

clear, such that it is easier for us to detect anomalies 

resulted from very high or very low configuration 

ratios. Taking server lifetime as weak supervision 

signal, we expect the log ratios can easily distinguish 

servers with very short lifetime.  

 

Figure 7: Scatterplot of Server Lifetime against Log(disk size: 

memory size) and Log(disk size: number of CPUs) 

Figure 7 shows the scatter plot of server lifetime 

against two log ratio features, Log(disk size: memory 

size) and Log(disk size: number of CPUs ). We 

observe that server lifetimes tend to be higher around 

the middle region of log ratios, which is consistent 

with our assumption.  

 

4.3 Model Performance 

Since we use CatBoost regressor to predict the server 

lifetime which is not a linear model, R Squared 

(Coefficient of Determination) is not a good 

evaluation metric in this case. Therefore, we use 

WMAPE (Weighted Mean Absolute Percent Error) to 

evaluate our model in addition to R Squared.  

   
∑ (    ̅)  ∑ (    ̂ )

  
   

 
   

∑ (    ̅)  
   

            (  ) 

      
∑ |    ̂ |

 
   

∑ |  |
 
   

                (  ) 

WMAPE is a measure of the absolute error relative to 

the true value, which ranges from 0 to infinity. 

WMAPE is a metric for non-negative target values, 

and low WMAPE value indicates good model 

performance. R Squared ranges from 0 to 1, and a 

value close to 1 indicates the model performance is 

good.  

Table 9: Server Lifetime Prediction Model 

Performance 

Metrics Value 

R Square 0.831 

WMAPE 0.323 

We implemented 10-Fold Cross Validation
3

 to 

compute those metric values.  

 

4.4 Selected Anomalies 

Due to lack of labelled anomalies, we don’t have 

ground truth to evaluate the performance of our 

anomaly detection model. However, as we can 

observe from Table 10, 

the detected anomalies 

all display mismatches 

of certain server 

configurations, 

especially those with 

too large or too small 

disk space compared to 

the CPU and memory 

selection. 

                                                      

3
 K-Fold Cross Validation: In k-fold cross-validation, the original 

sample is randomly partitioned into k equal sized subsamples. Of 

the k subsamples, a single subsample is retained as the validation 

data for testing the model, and the remaining k − 1 subsamples are 

used as training data. The process is then repeated k times, with 

each of the k subsamples used exactly once as the validation data. 
The k results can then be averaged to produce a single estimation. 
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Table 10: Detected Server Configuration Anomalies 

Number of 

CPUs 

Memory Size 

(GB) 

Disk Storage 

Size (GB) 

Network 

Bandwidth 

(M) 

OS 
Arch 

Type 
User Group 

Anomaly 

Scores 

84 224 30 1 CentOS arm Teacher 0.68 

84 224 30 1 CentOS arm Student 0.68 

84 224 30 1 CentOS arm Research Project Leader 0.68 

84 224 30 1 CentOS arm Super Admin 0.67 

84 224 30 1 CentOS x86 Teacher 0.68 

84 224 30 1 CentOS x86 Student 0.68 

84 224 30 1 CentOS x86 Research Project Leader 0.68 

84 224 30 1 CentOS x86 Admin 0.68 

84 224 30 1 CentOS x86 Teacher 0.68 

84 224 30 1 CentOS x86 Student 0.68 

84 224 30 1 CentOS x86 Research Project Leader 0.68 

84 224 30 1 CentOS x86 Admin 0.68 

84 224 30 1 CentOS x86 Teacher 0.68 

84 224 30 1 CentOS x86 Student 0.68 

84 224 30 1 CentOS x86 Research Project Leader 0.68 

16 64 4096 50 Ubuntu x86 Teacher 0.73 

16 64 4096 50 Ubuntu x86 Student 0.73 

16 64 4096 50 Ubuntu x86 Research Project Leader 0.73 

90 240 100 50 CentOS x86 Research Project Leader 0.71 

 

5 Conclusions 

In this paper, we have summarized and analyzed the 

limitations of classical anomaly detection algorithms, 

specifically highlighting the issue of Minority Bias. 

Traditional methods, including statistical approaches 

and unsupervised learning techniques, often struggle 

with incorporating both continuous and categorical 

features effectively, leading to suboptimal 

performance in complex scenarios such as server 

configuration selection in cloud computing platforms. 

To address these limitations, we proposed a novel 

weakly supervised method that leverages predicted 

server lifetime as a weak signal to guide the anomaly 

detection process. Our approach utilizes the CatBoost 

Regressor, which is adept at handling both categorical 

and continuous features, thereby considering the 

diverse customer behaviors across different user 

groups. By predicting server lifetime based on server 

configurations and user group information, we 

effectively integrate the nuances of user interactions 

and preferences into the anomaly detection 

framework. 

The predicted server lifetime serves a dual purpose: it 

acts as a descriptive feature in the Isolation Forest 

anomaly detection model and as an outcome 

threshold to filter detected anomalies. This dual use 

allows the model to incorporate the impact of 

categorical features such as user groups, operating 

systems, and architecture types, thereby mitigating 

the risk of Minority Bias. The inclusion of these 

features enhances the model's ability to accurately 

detect misconfigured servers, ensuring a more robust 

and reliable anomaly detection process. 

Our method demonstrates several advantages. Firstly, 

it integrates both continuous and categorical data, 

enabling a comprehensive analysis of server 

configurations. Secondly, by using server lifetime as a 

weak signal, we enhance the model's performance 

and reliability. Lastly, our approach is scalable and 

computationally efficient, making it suitable for 

deployment in large-scale cloud computing platforms. 

Future work will involve further refining the model to 

handle more complex configurations and expanding 

the scope to include additional types of cloud services. 

Additionally, exploring other weakly supervised 

learning techniques and incorporating more diverse 

data sources could further improve the robustness and 

accuracy of the anomaly detection process. By 

continuing to enhance these methods, we aim to 

provide cloud computing platforms with more 

effective tools for ensuring optimal server 

configurations and enhancing overall customer 

satisfaction. 
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