
 Qiuyu Tian (Correspondence)
 +

This article is published under the terms of the Creative Commons Attribution License 4.0
Author(s) retain the copyright of this article. Publication rights with Alkhaer Publications.
Published at: http://www.ijsciences.com/pub/issue/2024-07/
DOI: 10.18483/ijSci.2779; Online ISSN: 2305-3925; Print ISSN: 2410-4477

A Weakly Supervised Learning Approach
to Anomaly Detection on

Cloud Server Configuration

Qiuyu Tian1
, Hongwei Tang1, Xiaohong Wang1

1Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Abstract: Cloud computing platforms have become increasingly popular across various industries, offering publicly accessible computing,
storage, and network solutions to meet the demands of building, scaling, and managing applications. A critical component of these platforms is
the recommendation system, which significantly influences customer experience and platform revenue. However, variations in customer
behavior and product attributes result in different recommendation scenarios across platforms. One key scenario faced by customers of cloud
computing platforms is configuration selection. In this paper, we present an innovative approach to detect potentially misconfigured cloud
servers in such scenarios. Our method utilizes weakly supervised learning, using server lifetime as a weak signal to guide the configuration
anomaly detection model. By implementing this configuration check, we can prevent customers from purchasing misconfigured products, thus
promoting a stable and satisfactory relationship between cloud computing platforms and their customers.

Keywords: Weakly Supervised Learning, Anomaly Detection, Cloud Computing

1 Introduction

Cloud computing platforms encompass a variety of

services, including Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a

Service (SaaS), each providing complementary

functionalities. Similar to online shopping platforms,

cloud computing platforms have three key

contributors: customers, products, and providers. On

large platforms like AWS, the provider is the same

for all cloud services. Online shopping platforms

typically rely on multi-objective recall strategies,

along with embedding learning and knowledge

graph techniques, to generate customized and

intelligent recommendations. However, the

scenarios on cloud computing platforms differ

significantly.

Users of cloud computing services often stick to a

single type of cloud product and show little interest

in products from other categories. The main

products on cloud platforms are servers and storage

solutions, which generally require users to select

configurations during the purchasing process. When

a customer attempts to purchase (or rent) a cloud

server, they must configure various parameters, such

as the number of CPU units, memory size, disk

storage size, operating system, and GPU type.

However, customers often possess varying levels of

technical knowledge, and sometimes they fail to

select appropriate configurations. For instance, if a

student intends to rent a GPU cloud server to train a

machine learning model and selects 8 CPU units,

32GB of memory, a Tesla T4 GPU, but only 30GB

of disk storage, numerous errors due to insufficient

disk space are likely to occur. Once a customer

purchases a misconfigured cloud computing

product, they may need to shut down the current

server instance and start a new one soon after,

leading to unsatisfactory outcomes such as

additional charges and wasted effort in redoing work

saved on the old server.

In this paper, we highlight the limitations of existing

methodologies for anomaly detection, specifically

statistical and unsupervised learning approaches,

when applied to the scenario of configuration

selection. Our data is not time-sensitive, thus time

series approaches are not considered. Statistical

approaches such as Z-score and Inter-Quartile Range

(IQR) are limited to single continuous features, with

Z-score further assuming a normal distribution of

the feature. Existing unsupervised learning methods,

including DBSCAN [1], LOF [2], and One-class

SVM [3], detect anomalies based on distance and

density measures, which are not applicable to

categorical features. Additionally, these methods

suffer from the curse of dimensionality, leading to

computational inefficiency. These limitations are

discussed in detail in Section 2.

We propose a weakly supervised approach to

anomaly detection, using server lifetime as a weak

signal. Server lifetime is defined as the duration

between server creation and shutdown times. To

achieve this, we first employ a CatBoost [4]

regression model to predict server lifetime based on

basic server configurations and user group

information, with differences among user groups

outlined in Section 4. We then apply the Isolation

42

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

42 42

Forest [5] unsupervised anomaly detection model,

incorporating predicted server lifetime as one of its

descriptive features, to identify misconfigured

servers. The Isolation Forest algorithm relies on

predicted anomaly scores to detect anomalies, and

we introduce an additional constraint on predicted

server lifetime to filter anomalies and mitigate

minority bias. Our approach offers several

advantages: (i) it incorporates both continuous and

categorical features, considering differences among

user groups, (ii) it leverages server lifetime as a

weak signal to enhance model performance, and (iii)

it is scalable and computationally efficient. Detailed

methodology and results are presented in Section 3.

2 Related Work

2.1 Statistical Approach for Anomaly Detection

The Z-score measures how far a data point is away

from the mean as a signed multiple of the standard

deviation; large absolute values of the Z-score

suggest an anomaly. Let be a descriptive

feature, assume follows Normal Distribution, ̅

represents its mean and represents its standard

deviation, then we have Z-score defined as:

 ̅

 ()

A Z-score of 3 is commonly used as the threshold

above which it indicates outliers, since according to

Normal Distribution, 99.7% of the data points lie

between +/- 3 standard deviations. As we can see,

using Z-score is a very naïve approach, since it

assumes normal distribution, which is not always

true.

Figure 1: Probability Density Function of Normal Distribution

Marked with Standard Deviations.

The Inter-Quartile Range is a measure of statistical

dispersion
1
. It is defined as the difference between

the 75
th

 and 25
th

 percentiles of the data. To calculate

IQR, the data is divided into quartiles, denoted by

 (the lower quartile, 25
th

 percentile), (the

median, 50
th

 percentile), (the upper quartile, 75
th

percentile).

1 Statistical Dispersion: In statistics, dispersion (also called

variability, scatter, or spread) is the extent to which a distribution
is stretched or squeezed.

 ()

The interquartile range is often used to find outliers

in data. Outliers here are defined as observations

that fall below or above
 . In a boxplot, the highest and lowest

occurring value within this limit are indicated by

whiskers of the box (frequently with an additional

bar at the end of the whisker) and any outliers as

individual points.

Figure 2: Illustration of IQR on Outlier Detection in Boxplot.

Compared to Z-score, the IQR method does not need

to make assumption on statistical distribution of the

feature. Here, 1.5 is a threshold that we can adjust.

However, it still can deal with only one single

feature at a time.

2.2 Unsupervised Machine Learning Approaches

for Anomaly Detection

2.2.1 Distance-based Method: One-class SVM

Supervised anomaly detection requires labelled

dataset that indicates whether a record is “normal”

or “abnormal”, while unsupervised approach deals

with unlabeled dataset which assumes the majority

of data are “normal” and tries to find data which are

very different from normal ones as anomalies.

Statistically, we use distance to describe how

different one sample is from the other – similar

points should be close in distance. Euclidean

distance [7] and Manhattan distance [8] are two

most commonly-used distance measures. Let

 () denotes the -th datapoint, and

 denotes the -th feature of -th datapoint (totally

 features), we have:

 ()

 √∑()

() ()

 () ∑| |

() ()

One-class Support Vector Machine (SVM) is one of

the unsupervised anomaly detection algorithms

based on distance. SVM [9] algorithm was primarily

used for binary classification problems. Let

43

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

43 43

() () () be the dataset, where

 is the -th input data and is the

label of . SVM algorithm tries to create a

hyperplane (decision boundary) to separate class

and by making projections on data, and support

vectors are data points that are closer to the

hyperplane and influence the position and

orientation of the hyperplane. Let be the weights

(coefficients) and be the bias, the hyperplane is

defined by:

 ()

The hyperplane determines the margin between the

classes, class -1 and 1 are on two different sides of

the hyperplane, and the distance from the closest

point from each class to the hyperplane is equal.

That is, with proper scaling on such distance, we can

have for and

for . The distance from a point to the

hyperplane is given by:

| |

|| ||
 ()

If is one of the support vectors, that is or

 , we have , and then

 || || . In SVM algorithm, we want to

maximize || || while subject to two constraints:

1) for and 2)

for , which can be written together as

 (
) . With Lagrange Multiplier [10],

the optimization problem can be described as:

‖ ‖

 ∑ ((
)

) ()

In order to prevent the SVM classifier from over-

fitting with noisy data, slack variables are

introduced to generate soft margins, the idea of

which is to allow some points sit on the wrong side

of hyperplane.

‖ ‖ ∑ ((

) ())

 ∑

 ()

One-class SVM [3] is similar, but instead of using a

hyperplane to separate two classes of datapoints, it

treats every datapoint as normal and uses a

hyperplane to encompass all of them. Any datapoint

that sit on the other side of hyperplane will be

detected as anomalies.

2.2.2 Density-based Methods: DBSCAN and LOF

Density-based anomaly detection algorithms use the

concept of “density” to define “abnormality” in a

relative sense, starting from distance measures. One

prominent method is Density-Based Spatial

Clustering of Applications with Noise (DBSCAN)

[1], which determines density by counting the

number of points within a specified radius. In

DBSCAN, each point is classified

according to the following criteria:

1) Core Point: A point is

designated as a core point if it

has at least a minimum

number of neighboring points

(MinPts) within the radius .

2) Border Point: A border point

has fewer neighbors than

MinPts within but is within the radius of a

core point.

3) Noise Point: Points that are neither core points

nor border points are classified as noise points.

The DBSCAN algorithm proceeds in two main steps

after labeling the points:

1) Create a separate cluster for each core point or

group of connected core points (core points are

considered connected if they are within of

each other).

2) Assign each border point to the cluster

associated with its nearest core point.

While DBSCAN is widely used for clustering, it

also effectively identifies anomalies by classifying

noise points as anomalies, and treating all other

points as normal. This dual functionality makes

DBSCAN a versatile tool for both clustering and

anomaly detection tasks.

Figure 3: An Example Illustrating the Density-Based DBSCAN

Clustering Method Applied to SMLM2 Data.

2 SMLM: Single-molecule localization microscopy describes a
family of powerful imaging techniques that dramatically improve

44

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

44 44

Local Outlier Factor (LOF) [2] algorithm uses a

different measure of density. Below are some

important terminologies associated with LOF:

1) k-distance: is the distance between the point

and its k-th nearest neighbor.

2) k-neighbors: the set of points that lie within

the circle of radius of k-distance of ,

denoted by ().

3) Reachability Distance: the maximum of k-

distance of and the distance between

and ; reachability distance is not

symmetric.

 ()

 { () ()} ()

4) Local Reachability Density:

 ()

| ()|

∑ () ()

 ()

5) Local Outlier Factor:

 ()

| ()|

∑ () ()

 ()
 ()

If the point is not an outlier (inlier), the ratio of

average local reachability density (LRD) of

neighbors is approximately equal to the local

reachability density of a point, because the density

of a point and its neighbors are roughly equal. In

that case, LOF value is nearly equal to 1. On the

other hand, if the point is an outlier, the LRD of a

point is less than the average LRD of neighbors,

then LOF value will be high.

The main issues related to distance or density-based

algorithm is curse of dimensionality, especially

those involve in nearest neighbor search.

Furthermore, distance measures cannot be computed

on feature space with (non-ordinal) categorical

features. For example, even if we use one-hot

encoding [11] to convert season into four indicator

variables, the differences (e.g. , -
, - , -) among them do not make

sense.

2.2.3 New Modeling Concept: Isolation Forest

Unlike the distance and density-based approaches [1,

2, 3] we covered in Section 2.2.1 and Section 2.2.2

which try to build a model of normal datapoints, the

Isolation Forest explicitly isolates anomalous

spatial resolution over standard, diffraction-limited microscopy

techniques and can image biological structures at the molecular
scale.

datapoints. The Isolation Forest algorithm takes

advantage of two quantitative properties of

anomalous data points in a sample:

1) Few: anomalies are the minority consisting

fewer instances;

2) Different: anomalies have attribute values

that are very different from those of normal

instances.

According to those two properties, there is the

tendency of anomalies in a dataset to be easier to

separate from the rest of the sample, compared to

normal points. In order to isolate a data point, the

algorithm recursively generates partitions on the

sample by randomly selecting an attribute and then

randomly selecting a split value for the attribute,

between the minimum and maximum values allowed

for that attribute. Recursive partitioning can be

represented by a tree structure named Isolation Tree.

Given a dataset * + , where is

the dimension of feature space. For subsample

 , the Isolation Tree (iTree) is defined as data

structure with the following properties:

1) For each node in the tree, is either an

external-node without child or an internal-

node with one “test” and exactly two

daughter nodes and .

2) A test at node consists of an attribute

and a split value such that the test

determines the traversal of a data point to

either or .

In order to build an iTree, the algorithm recursively

divides by randomly selecting attribute and a

split value , until either the node has only one

instance or all data at the node have the same values.

When the iTree is fully grown, each point in is

isolated at one of the external nodes. Intuitively,

anomalies are those with the smaller path length in

the tree, where the path length () of point

is defined as the number of edges traverses from

the root node to get to an external node.

The algorithm for computing the anomaly score of a

data point is based on the observation that the

structure of iTrees is equivalent to that of Binary

Search Trees (BST) [12]: a termination to an

external node of the iTree corresponds to an

unsuccessful search in the BST. As a consequence,

the estimation of average () for external node

terminations is the same as that of the unsuccessful

searches in BST, that is:

 ()

 {
 ()

 ()

 ()

45

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

45 45

where is the testing data size, is the size of the

sample set, and is the harmonic number, which

can be estimated by () () ,
 is the Euler-Mascheroni constant.

The value () represents the average path length

of a BST built on datapoints, which is used to

normalize () and get an estimation of the

anomaly score for a given instance :

 ()
 , ()-

 () ()

where , ()- is average value of () from a

collection of iTrees.

Anomaly detection with Isolation Forest is a process

composed of two main steps:

1) Use training data to build iTrees;

2) Pass each instance in test set through all the

iTrees and calculate the anomaly score

If anomaly score is close to 1, then the instance is

very likely to be an anomaly; if anomaly score is

smaller than 0.5, then the instance is likely to be a

normal point. Furthermore, if all the instances have

an anomaly score of around 0.5, then it is safe to

assume that the sample does not have any anomalies.

Compared with distance and density-based methods,

Isolation Forest has the following advantages:

1) Isolation Forest has a lower linear time

complexity and small memory requirement (no

need to store the training dataset in order to

compute nearest neighbors);

2) All the iTrees in Isolation Forest are

independent, which can be built on parallel or

distributed environment to enhance training

speed;

3) Isolation Forest is able to deal with high

dimensional data with irrelevant features

including one-hot encoded categorical features;

4) Isolation Forest can be trained with or without

anomalies in the training set;

5) Isolation Forest can provide detection results

with different levels of granularity without re-

training.

2.3 An Extension to GBDT with Categorical

Features: CatBoost

CatBoost is an improvement over GBDT (Gradient

Boosting [13] Decision Tree), which applies special

target statistics [15] (TS) technique to handle

categorical features. The original GBDT method can

be summarized like below:

Given a dataset *()+ , each consists

of features, and is the target, which can be

either discrete labels or continuous response. Let

 () be the prediction function obtained from -th

iteration, which is updated in an additive manner:

 () () (), where is the step size (or

learning rate), function () represents the base

predictor (decision tree) chosen to minimize the

expected loss :

 ()

 (())

 0 . ()() ()/1 ()

If the loss function is chosen to be least square

loss, then gradient is given by:

 (()).

Ignoring the constant part, the base decision tree

 () is actually fitting the residuals (gradient)

() |

 () ()(), this is where the name

“Gradient” Boosting [14] comes from.

Target statistics method is commonly used in

boosting tree to deal with categorical features. Let

 be the -th feature of -th sample, according to

target statistics, it will be encoded as:

∑ []

∑ []

 ()

which is just the weighted average of target

responses with regards to each level in feature .

However, using TS method directly may result in

prediction shift or target leakage issue. Therefore,

CatBoost employed Ordered TS [4] method. For

each sample , we randomly shuffle all the samples,

and use the samples before to compute the TS. In

order to reduce the variance, we perform the random

sampling and TS computation at each iteration, and

thus different random sequences of samples were

used throughout the training process.

In addition to ordered TS, CatBoost uses

combinations of categorical features as additional

categorical features which is capable of capturing

high-order dependencies. CatBoost constructs such

combination in a greedy way: for each split of a tree,

CatBoost concatenates all the categorical features

(including their combinations) already used for

previous split in the current tree with all the

remaining categorical features in the dataset,

meanwhile those combinations are transferred into

target statistics.

2.4 Concept of Weakly Supervised Learning

Weakly Supervised Learning encompasses scenarios

where the quantity or quality of the supervision

signal is significantly limited. According to Zhi-Hua

Zhou [6], weak supervision can be categorized into

three types. The first type is incomplete supervision,

where only a limited portion of the training data is

labeled, akin to the semi-supervised learning setting.

46

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

46 46

The second type is inexact supervision, which

involves coarse-grained labels that lack sufficient

detail. This typically occurs when the provided

labels do not offer the necessary granularity. The

third type is inaccurate supervision, which arises

when the provided labels are not always accurate or

true representations of the ground truth.

In our context, we lack human-generated labels to

definitively determine whether a server

configuration is appropriate. However, we have

observed that customers tend to shut down servers

with inadequate configurations and replace them

with new ones, leading to a short server lifetime.

Therefore, server lifetime can serve as an indirect

indicator of whether a server configuration is

effective or not. By utilizing server lifetime as a

weak supervision signal, we align with the scenario

of inaccurate supervision, where the signal is not

always perfectly aligned with the ground truth but

still provides valuable guidance for anomaly

detection.

3 Methods

Figure 4: Flowchart of Server Configuration Anomaly Detection.

In this section, we describe the modeling details of

the server configuration anomaly detection problem,

including feature selection and model

hyperparameter settings. Some experiments are done

during this stage in order to validate the feature

selection part, and we will show their results in

Section 4. The process flowchart is given below:

3.1 Server Lifetime Prediction

The raw data comes from OneITLab cloud service

platform, which contains 3147 servers, and 2904 of

them is already shut down. We remove the servers

that is marked as test server and only focus on those

with clear record on creation and shutdown

timestamp, which results in 1170 servers including

common servers (CPU-only) and GPU servers.

OneITLab is mainly used by students, professors,

and researchers from Chinese Academy of Sciences.

It offers cloud services like virtual server, storage,

and clusters.

We first extract the server configuration, user group,

and server activity history information from the

backend database, and selected the following

descriptive features to train CatBoost regression

model to predict the server lifetime:

Table 1: Descriptive Features for Server Lifetime

Prediction Model.

Feature Name Variable Name Examples

Number of CPUs cpu_num 4, 8

Memory Size memory_num 16, 32 (GB)

Disk Size storage_size 30, 64, 128

(GB)

Internet Bandwidth bandwidth 1, 100 (M)

Operating System os_name Ubuntu,

CentOS

Number of GPUs gpu_num 0, 1, 2

User Group group teacher, student,

testbed user

Architecture Type arch_type X86, ARM

The model hyperparameters for CatBoost are

configured as below:

Table 2: Hyperparameter Configuration of CatBoost

Regressor.

Hyperparameter Name Value

Categorical Feature Set group, os_name, arch_type

Number of Iterations 1000

Decision Tree Structure Symmetric

L2 Regularization Strength 3

Max Tree Depth 5

Learning Rate 0.05

Max Number of Leaves 64

3.2 Server Configuration Anomaly Detection

Model

Minority Bias in anomaly detection models refers to

the situation when samples from minority groups are

more likely to be detected as anomalies, which results

in high false positive rate. In our scenario, few users

ordered servers with very high configurations, e.g. 10

CPU, 64GB RAM, 2048GB Disk. Since those server

configurations appear to be rare in training data,

unsupervised anomaly detection algorithms often

detect them as anomalies, even though those server

47

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

47 47

configurations are reasonable for users with needs for

large project or computationally intensive tasks. We

employ two methods to handle the Minority Bias

issue: 1) perform feature engineer to generate more

representative descriptive features, 2) use predicted

server lifetime as weak signal to filter the anomaly

detection outcomes.

1) Feature Engineering

We use Pearson Correlation Coefficients [16] to

analyze the correlation between continuous server

configuration features described in Section 3.1. The

formula of Pearson Correlation Coefficient is shown

below:

∑ (̅)(̅)

√∑ (̅)
 √∑ (̅)

 ()

which has a range of -1 to 1. The absolute value of

Pearson Correlation Coefficient indicates the strength

of linear correlation between variable and variable

 , and its sign represents if they are positively or

negatively correlated.

Table 3: Pearson Correlation Coefficients of Server

Configurations

cpu_nu

m

memory_

num

storage_n

um

bandwid

th

gpu_nu

m

cpu_num 1.00 0.97 0.49 0.23 0.67

memory_nu

m
0.97 1.00 0.48 0.18 0.80

storage_nu

m
0.49 0.48 1.00 0.15 0.27

bandwidth 0.23 0.18 0.15 1.00 0.00

gpu_num 0.67 0.80 0.27 0.00 1.00

Based on Pearson Correlation Coefficients, we find

that those features are all positively correlated, which

is consistent with that a computationally intensive

task or large project usually requires all the

configurations to be high. Intuitively, if someone

selects a server with disk size smaller than memory

size, it will be problematic. Therefore, as one of

number of CPUs, memory size, and disk size

increases, we expect the other to increase

synchronically. One way to quantify this phenomenon

is to use ratios, e.g. “disk size: memory size”,

“memory size: number of CPUs”, and “disk size:

number of CPUs”. If those kinds of ratios appear to

be too high or too low, it is likely that corresponding

configurations are abnormal.

Figure 5: Histogram of “Disk Size: Memory Size”, “Memory Size: Number CPUs”, and “Disk Size: Number of CPUs” (from left to right)

However, if we check the histogram of those ratios,

we find that “disk size: memory size” and “disk size:

number of CPUs” follow long-tail distribution, and it

is hard to detect low ratios. This is because number of

CPUs usually increases exponentially, e.g. 2, 4, 8, 16,

and etc., and the selection of memory size and

number of CPU are usually bundled together.

However, we can perform log transformations on

those distribution to make them close to Gaussian

distribution:

Figure 6: Histogram of “Log(Disk Size: Memory Size)”, “Log(Memory Size: Number CPUs)”, and “Log(Disk Size: Number of CPUs)” (from

left to right)

With log transformations, it is easier to detect both

high and low ratios. Moreover, in log transformation,

the order in ratios does not matter, that is “disk size:

memory size” and “memory size: disk size” look

similar, and thus we only need to include one of them

as descriptive features. Therefore, we construct three

48

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

48 48

log-transformed ratio features using disk_num,

memory_num, and n_cpu, together with bandwidth

and predicted server lifetime for the anomaly

detection model.

 Table 5: Descriptive Features for Anomaly Detection

Model

Feature Name Variable Name

Predicted Server Lifetime pred_lifetime

Log(Memory Size: Number of CPUs) log_memory2cpu

Log(Disk Size: Number of CPUs) log_disk2cpu

Log(Disk Size: Memory Size) log_disk2memory

Internet Bandwidth bandwidth

2) Predicted Server Lifetime as Weak Signal

We use the features in table to build the Isolation

Forest model, with the following hyperparameters:

Table 6: Hyperparameter Configuration of Isolation

Forest Anomaly Detection Model

Hyperparameter Name Value

Use Bootstrap Sample or Not Yes

Contamination Ratio 0.01

Max Number of Features 1.0

Number of iTrees 1000

Max Server Lifetime 168

Here, the Max Server Lifetime is an additional

hyperparameter that we add to this model, which

serves as a threshold for us to select the final

anomalies. 168 is in the unit of hours, which indicates

one week’s time ().

The original Isolation Forest model outputs an

anomaly score ranged from 0 to 1for each data point,

and those with a score close to 1 are selected as

anomalies. However, in order to avoid Minority Bias

issue, we won’t select the server configurations with a

predicted server lifetime more than one week as

anomalies. This is because there should be a positive

relation between server lifetime and customer’s

satisfaction, and intuitively, the configurations that

users get used to should be reasonable and not

selected as anomalies.

4 Experiments and Results

4.1 The Difference in User Groups

There are 6 user types in OneITLab’s dataset: (1)

student, (2) testbed, (3) teacher, (4) research project

leader, (5) admin, and (6) super admin, and those

roles are not mutually exclusive – one user can have

multiple roles. Table 7 shows the average

configuration selected by users from different groups.

Table 7: Average Configurations for Different User Group

User Groups
Average

n_cpu

Average

memory_num

Average

bandwidth

Average

storage_num

Number of

Servers

Student 6.87 15.80 1.41 95.98 717

Testbed User 4.15 8.95 1.09 55.46 224

Teacher 5.49 13.11 1.46 79.96 1012

Research Project

Leader
7.21 17.19 10.85 130.24 1013

Admin 5.00 12.98 0.95 51.85 324

Super Admin 7.94 23.21 1.78 60.16 107

As we can see from the table, research project leaders

tend to choose servers with higher configurations than

others while testbed user and admin usually select

lower configurations.

In addition, we use entropy to quantify the diversity

of configuration selections for each user groups.

Entropy measures the impurity of a set of elements,

which is given by the formula:

 () ∑

 ()

Assume is a set of elements taking up to values,

 , then is the probability that a randomly

chosen element has a value of , ().

The higher the entropy, the higher diversity (impurity)

of the list. Table shows the entropy in configurations

of each user group.

49

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

49 49

Table 8: Entropy of Configurations for Different User

Group

User Groups
n_cpu
Entropy

memory_n

um

Entropy

bandwidth
Entropy

storage_nu
m Entropy

Student 1.27 1.18 0.59 1.10

Testbed User 0.74 1.11 0.55 1.35

Teacher 1.15 1.21 0.49 1.26

Research
Project Leader

1.34 1.29 0.86 1.44

Admin 0.89 0.78 0.45 0.31

Super Admin 1.31 1.30 0.54 0.59

We observed high diversity of configuration selection

among research project leader and low diversity

among admin and testbed users.

4.2 Impact of Log Ratios

In Section 3.2 we perform feature engineering, using

the log transformations on configuration ratios to

make it appear to follow Gaussian distribution. We

argue that log transformation will make the patterns

clear, such that it is easier for us to detect anomalies

resulted from very high or very low configuration

ratios. Taking server lifetime as weak supervision

signal, we expect the log ratios can easily distinguish

servers with very short lifetime.

Figure 7: Scatterplot of Server Lifetime against Log(disk size:

memory size) and Log(disk size: number of CPUs)

Figure 7 shows the scatter plot of server lifetime

against two log ratio features, Log(disk size: memory

size) and Log(disk size: number of CPUs). We

observe that server lifetimes tend to be higher around

the middle region of log ratios, which is consistent

with our assumption.

4.3 Model Performance

Since we use CatBoost regressor to predict the server

lifetime which is not a linear model, R Squared

(Coefficient of Determination) is not a good

evaluation metric in this case. Therefore, we use

WMAPE (Weighted Mean Absolute Percent Error) to

evaluate our model in addition to R Squared.

∑ (̅) ∑ (̂)

∑ (̅)

 ()

∑ | ̂ |

∑ | |

 ()

WMAPE is a measure of the absolute error relative to

the true value, which ranges from 0 to infinity.

WMAPE is a metric for non-negative target values,

and low WMAPE value indicates good model

performance. R Squared ranges from 0 to 1, and a

value close to 1 indicates the model performance is

good.

Table 9: Server Lifetime Prediction Model

Performance

Metrics Value

R Square 0.831

WMAPE 0.323

We implemented 10-Fold Cross Validation
3

 to

compute those metric values.

4.4 Selected Anomalies

Due to lack of labelled anomalies, we don’t have

ground truth to evaluate the performance of our

anomaly detection model. However, as we can

observe from Table 10,

the detected anomalies

all display mismatches

of certain server

configurations,

especially those with

too large or too small

disk space compared to

the CPU and memory

selection.

3
 K-Fold Cross Validation: In k-fold cross-validation, the original

sample is randomly partitioned into k equal sized subsamples. Of

the k subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining k − 1 subsamples are

used as training data. The process is then repeated k times, with

each of the k subsamples used exactly once as the validation data.
The k results can then be averaged to produce a single estimation.

50

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

50 50

Table 10: Detected Server Configuration Anomalies

Number of

CPUs

Memory Size

(GB)

Disk Storage

Size (GB)

Network

Bandwidth

(M)

OS
Arch

Type
User Group

Anomaly

Scores

84 224 30 1 CentOS arm Teacher 0.68

84 224 30 1 CentOS arm Student 0.68

84 224 30 1 CentOS arm Research Project Leader 0.68

84 224 30 1 CentOS arm Super Admin 0.67

84 224 30 1 CentOS x86 Teacher 0.68

84 224 30 1 CentOS x86 Student 0.68

84 224 30 1 CentOS x86 Research Project Leader 0.68

84 224 30 1 CentOS x86 Admin 0.68

84 224 30 1 CentOS x86 Teacher 0.68

84 224 30 1 CentOS x86 Student 0.68

84 224 30 1 CentOS x86 Research Project Leader 0.68

84 224 30 1 CentOS x86 Admin 0.68

84 224 30 1 CentOS x86 Teacher 0.68

84 224 30 1 CentOS x86 Student 0.68

84 224 30 1 CentOS x86 Research Project Leader 0.68

16 64 4096 50 Ubuntu x86 Teacher 0.73

16 64 4096 50 Ubuntu x86 Student 0.73

16 64 4096 50 Ubuntu x86 Research Project Leader 0.73

90 240 100 50 CentOS x86 Research Project Leader 0.71

5 Conclusions

In this paper, we have summarized and analyzed the

limitations of classical anomaly detection algorithms,

specifically highlighting the issue of Minority Bias.

Traditional methods, including statistical approaches

and unsupervised learning techniques, often struggle

with incorporating both continuous and categorical

features effectively, leading to suboptimal

performance in complex scenarios such as server

configuration selection in cloud computing platforms.

To address these limitations, we proposed a novel

weakly supervised method that leverages predicted

server lifetime as a weak signal to guide the anomaly

detection process. Our approach utilizes the CatBoost

Regressor, which is adept at handling both categorical

and continuous features, thereby considering the

diverse customer behaviors across different user

groups. By predicting server lifetime based on server

configurations and user group information, we

effectively integrate the nuances of user interactions

and preferences into the anomaly detection

framework.

The predicted server lifetime serves a dual purpose: it

acts as a descriptive feature in the Isolation Forest

anomaly detection model and as an outcome

threshold to filter detected anomalies. This dual use

allows the model to incorporate the impact of

categorical features such as user groups, operating

systems, and architecture types, thereby mitigating

the risk of Minority Bias. The inclusion of these

features enhances the model's ability to accurately

detect misconfigured servers, ensuring a more robust

and reliable anomaly detection process.

Our method demonstrates several advantages. Firstly,

it integrates both continuous and categorical data,

enabling a comprehensive analysis of server

configurations. Secondly, by using server lifetime as a

weak signal, we enhance the model's performance

and reliability. Lastly, our approach is scalable and

computationally efficient, making it suitable for

deployment in large-scale cloud computing platforms.

Future work will involve further refining the model to

handle more complex configurations and expanding

the scope to include additional types of cloud services.

Additionally, exploring other weakly supervised

learning techniques and incorporating more diverse

data sources could further improve the robustness and

accuracy of the anomaly detection process. By

continuing to enhance these methods, we aim to

provide cloud computing platforms with more

effective tools for ensuring optimal server

configurations and enhancing overall customer

satisfaction.

51

A Weakly Supervised Learning Approach to Anomaly Detection on Cloud Server Configuration

http://www.ijSciences.com Volume 13 – July 2024 (07)

51 51

References

1. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A
density-based algorithm for discovering clusters in large
spatial databases with noise. In E. Simoudis, J. Han, & U.
M. Fayyad (Eds.), Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining
(KDD-96) (pp. 226–231). AAAI Press.
https://www2.cs.uh.edu/~ceick/7363/Papers/dbscan.pdf

2. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J.
(2000). LOF: Identifying Density-based Local Outliers. In
Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (pp. 93–104). ACM.
https://doi.org/10.1145/335191.335388

3. Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-
Taylor, J., & Platt, J. C. (1999). Support Vector Method
for Novelty Detection. In Advances in Neural Information
Processing Systems (Vol. 12, pp. 582–588). MIT Press.

4. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.
V., & Gulin, A. (2018). CatBoost: Unbiased Boosting with
Categorical Features. In Advances in Neural Information
Processing Systems (Vol. 31).
https://arxiv.org/abs/1706.09516

5. Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation
Forest. In Proceedings of the 2008 IEEE International
Conference on Data Mining (pp. 413–422). IEEE.
https://doi.org/10.1109/ICDM.2008.17

6. Zhou, Z.-H. (2018). A Brief Introduction to Weakly
Supervised Learning. National Science Review, 5(1), 44–
53. https://doi.org/10.1093/nsr/nwx106

7. Smith, K. (2013). Precalculus: A Functional Approach to
Graphing and Problem Solving. Jones & Bartlett
Publishers.

8. Black, P. E. (2019). Manhattan distance. In Dictionary of

Algorithms and Data Structures. National Institute of
Standards and Technology.

9. Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3), 273–297.
https://doi.org/10.1007/BF00994018

10. Beveridge, G. S. G., & Schechter, R. S. (1970).
Lagrangian Multipliers. In Optimization: Theory and
Practice (pp. 244–259). New York: McGraw-Hill

11. Brownlee, J. (2020). Ordinal and One-Hot Encodings for
Categorical Data. Machine Learning Mastery.
https://machinelearningmastery.com/one-hot-encoding-
for-categorical-data/

12. Culberson, J., & Munro, J. I. (1989). Explaining the
Behaviour of Binary Search Trees Under Prolonged
Updates: A Model and Simulations. The Computer
Journal, 32(1), 68–69.
https://doi.org/10.1093/comjnl/32.1.68

13. Roe, B. P., Yang, H.-J., Zhu, J., Liu, Y., Stancu, I., &
McGregor, G. (2005). Boosted decision trees as an
alternative to artificial neural networks for particle
identification. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 543(2), 577–584.
https://doi.org/10.1016/j.nima.2004.12.018

14. Friedman, J. H. (1999). Greedy Function Approximation:
A Gradient Boosting Machine. In Annals of Statistics
(Vol. 29, pp. 1189–1232).
https://doi.org/10.1214/aos/1013203451

15. Micci-Barreca, D. (2001). A Preprocessing Scheme for
High-cardinality Categorical Attributes in Classification
and Prediction Problems. ACM SIGKDD Explorations
Newsletter, 3(1), 27–32.
https://doi.org/10.1145/507533.507538

16. Wright, S. (1921). Correlation and causation. Journal of
Agricultural Research, 20(7), 557–585.

