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Abstract: Starting from literature about invariant mass, we will discuss the expression of the generalized additivity of masses in the special 

relativity for a system of particles. We will show the general formula of additivity in the framework of hyperbolic geometry too, showing it being 

invariant. 
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Introduction 

In special relativity the mass is an invariant quantity 

and therefore is the same for all observers in all 

reference frames. Besides this invariant, we find in 

literature the ‗relativistic mass‘, which is defined as 

dependent on velocity. We can find the relativistic 

mass given as: 

𝑚𝑟𝑒𝑙 =
𝑚

√1 − 𝑣2 𝑐2⁄
 

In our discussion, we will start from some literature 

about this ‗relativistic‘ mass and continue 

considering the problem of mass additivity in special 

relativity. The hyperbolic geometric approach is 

given too. Before literature, it is fundamental to 

remember that energy and momentum are linked to 

the invariant mass by: 

𝐸2 − (𝑝𝑐)2 = (𝑚𝑐2)2 

 

Einstein’s thought 

Hecht, 2009, discusses mass and energy in Einstein‘s 

thought. ―Early on, Einstein embraced the idea of a 

speed-dependent mass but changed his mind in 1906 

and thereafter carefully avoided that notion entirely. 

He shunned, and explicitly rejected, what later came 

to be known as ‗relativistic mass‘. Nonetheless many 

textbooks and articles credit him with the relation 

E=mc
2
, where E is the total energy, m is the 

relativistic mass, and c is the vacuum speed of light. 

Einstein never derived this relation, at least not with 

that understanding of the meaning of its terms. He 

consistently related the rest energy of a system to its 

invariant inertial mass.‖ This is what we can find in 

the abstract by Hecht, 2009. It is therefore required to 

read something more from the article.  

 

―Einstein‘s first paper on relativity appeared when 

the concept of a speed-dependent electromagnetic 

mass had already become a topic of considerable 

interest. He accepted this idea but changed his mind 

after being confronted by a far more compelling 

insight‖ (Hecht, 2009). Hecht shows ―that after 

reading Planck‘s 1906 article in which the concept of 

relativistic momentum was introduced, Einstein came 

to realize that it was the relativistic equations for 

energy and momentum that were primary. From that 

perspective it became clear that the inertial mass m 

was invariant, and he never again spoke of mass as 

being speed dependent. Over the next several years, 

no doubt unaware of Einstein‘s change of mind, a 

number of researchers continued to elaborate on the 

idea that inertial mass varied with relative speed v‖ 

(Hecht, 2009). For these researchers, the ―Newtonian 

mass had to be replaced by the idea of relativistic 

mass mrel(v)‖ (Hecht, 2009), where: 

𝑚𝑟𝑒𝑙 = 𝑚0(1 − 𝑣2 𝑐2⁄ )−1 2⁄  

 

In this formula, 𝑚0 is the rest mass, that is the 

inertial mass when v=0. Since it was usual to 

represent (1 − 𝑣2 𝑐2⁄ )−1 2⁄  by 𝛾, we find in literature 

𝑚𝑟𝑒𝑙 = 𝑚0𝛾 or just 𝑚𝑟𝑒𝑙 = 𝑚𝛾. ―After 1908 there 

were two conflicting interpretations of relativistic 

dynamics: Einstein's invariant-mass perspective and 

the relativistic mass formulation. Meanwhile Einstein 

had shown that the energy of a system at rest was 

proportional to its inertial mass. Over the decades 

that followed, this extremely significant discovery 

took on the symbolic form 𝐸 = 𝑚𝑐2, wherein E is 

the total energy and m is the relativistic mass. 

Surprisingly, Einstein never derived nor ever 

accepted this relation. As E=mc
2
 was becoming the 

most widely recognized symbol of the Atomic Age, 

Einstein maintained that this general statement was 

formulated somewhat inexactly‖ (Hecht, 2009, 

Einstein, 1976). Among many others, Hecht is 

referring to Lev B. Okun, 1989, and his ―concept of 

mass (mass, energy, relativity)‖. 
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The concept of mass 

Okun hopes that he will ―succeed to convince the 

reader that the term rest mass 𝑚0 is superfluous, that 

instead of speaking of the rest mass 𝑚0 one should 

speak of the mass m of a body which for ordinary 

bodies is the same, in the theory of relativity and in 

Newtonian mechanics, [and also] that in both 

theories the mass m does not depend on the reference 

frame, that the concept of mass dependent on 

velocity arose at the beginning of the twentieth 

century as a result of an unjustified extension of the 

Newtonian relation between momentum and velocity 

to the range  of velocities comparable to the velocity 

of light in which it is invalid, and that at the end of 

the twentieth century one should bid a final farewell 

to the concept of mass dependent on velocity‖ (Okun, 

1989). 

 

Okun is stressing that ―the fundamental relations of 

the theory of relativity for a freely moving particle 

(system of particle, body) are: 𝐸2 − (𝑝𝑐)2 = (𝑚𝑐2)2  

(5.1) , 𝑝 = �⃗� 𝐸 𝑐2⁄   (5.2) , where E is the energy, p 

the momentum, m is the mass, and v the velocity of 

the particle (or system of particles, or body). It 

should be emphasized that the mass m and the 

velocity v for a particle or a body are the same 

quantities with which we deal in Newtonian 

mechanics. Like the four-dimensional coordinates t 

and r, the energy E and the momentum p are the 

components of a four-dimensional vector. They 

change on the transition from one inertial system to 

another in accordance with the Lorentz 

transformation. The mass, however, is not changed - 

it is a Lorentz invariant‖ (Okun, 1989). 

 

Moreover, as in the case of Newtonian mechanics, 

―the energy and momentum are additive — the total 

energy and total momentum of n free particles are, 

respectively,  𝐸 = ∑ 𝐸𝑖
𝑛
𝑖=1  ,  𝑝 = ∑ 𝑝𝑖⃗⃗⃗ ⃗

𝑛
𝑖=1   (5.3). With 

regard to the mass, in theory of relativity the mass of 

an isolated system is conserved (does not change 

with the time), but does not possess the property of 

additivity‖ (Okun, 1989). However, it is necessary 

―to include among the bodies not only matter, say 

atoms, but also radiation (photons).‖ (Okun, 1989). 

 

―For massive particles (as we shall call all particles 

with nonzero mass, even if they are very light) the 

relations for the energy and momentum can be 

conveniently expressed in terms of the mass and 

velocity. For this we substitute (5.2) in (5.1): 

𝐸2(1 − 𝑣2 𝑐2⁄ ) = 𝑚2𝑐4  (6.2) and, taking the square 

root, we obtain 𝐸 = 𝑚𝑐2(1 − 𝑣2 𝑐2⁄ )−1 2⁄ .  (6.3) 

Substituting (6.3) in (5.2), we obtain 𝑝 =

𝑚�⃗�(1 − 𝑣2 𝑐2⁄ )−1 2⁄ . (6.4). It is obvious from (6.3) 

and (6.4) that a massive body (with 𝑚 ≠ 0) cannot 

move with the speed of light, since then the energy 

and momentum of the body would have to be 

infinite‖ (Okun, 1989).  

 

―In the theory of relativity the mass of a system is not 

equal to the mass of the bodies that make up the 

system. This assertion can be illustrated by several 

examples‖ (Okun, 1989). Here a case: ―Consider two 

photons moving in opposite directions with equal 

energies E. The total momentum of such a system is 

zero, and the total energy (it is the rest energy of the 

system of the two photons) is 2E. Therefore, the mass 

of this system is 2E/c
2
. It is easy to show that a 

system of two photons will have zero mass only 

when they move in the same direction‖ (Okun. 

1989).  

 

Let us consider a system consisting of n particles. 

According to Okun, the mass of the system is 

determined by his formula (9.1): 

𝑚 = [(∑
𝐸𝑖
𝑐2

𝑛

𝑖=1

)

2

− (∑
𝑝𝑖⃗⃗⃗ ⃗

𝑐

𝑛

𝑖=1

)

2

]

1 2⁄

 

In it, ∑𝐸𝑖 is the sum of the energies of the bodies, 

and ∑𝑝𝑖⃗⃗⃗ ⃗ is the vector sum of momenta. Actually 

(9.1) tells us how to sum the masses.  

 

Masses and particles 

Further discussion is given by Landau and Lifshitz, 

1971. Landau and Lifshits ―emphasize that, although 

we speak of a particle, we have nowhere made use of 

the fact that it is elementary. Thus the formulas are 

equally applicable to any composite body consisting 

of many particles, where by m we mean the total 

mass of the body and by v the velocity of its motion 

as a whole‖. The formula (9.5) in Landau and 

Lifshitz, that of the rest energy, ―is valid for any 

body which is at rest as a whole. We call attention to 

the fact that in relativistic mechanics the energy of a 

free body (i.e. the energy of any closed system) is a 

completely definite quantity which is always positive 

and is directly related to the mass of the body‖. 

Moreover, ―in this connection we recall that in 

classical mechanics the energy of a body is defined 

only to within an arbitrary constant, and can be either 

positive or negative. The energy of a body at rest 

contains, in addition to the rest energies of its 

constituent particles, the kinetic energy of the 

particles and the energy of their interactions with one 

another. In other words, 𝑚𝑐2 is not equal to ∑𝑚𝑎 𝑐
2 

(where 𝑚𝑎 are the masses of the particles), and so m 

is not equal to ∑𝑚𝑎‖ (Landau & Lifshitz, 1971). It is 

clear that ―the mass of a composite body is not equal 

to the sum of the masses of its parts. Instead only the 
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law of conservation of energy, in which the rest 

energies of the particles are included, is valid‖ 

(Landau & Lifshitz, 1971). 

 

In Landau and Lifshitz we can find also discussed the 

decay of particles. ―Let us consider the spontaneous 

decay of a body of mass M into two parts with 

masses 𝑚1 and 𝑚2. The law of conservation of 

energy in the decay, applied in the system of 

reference in which the body is at rest, gives: 𝑀𝑐2 =

𝐸10 + 𝐸20  (11.1), where 𝐸10, 𝐸20 are the energies of 

the emerging particles. Since  𝐸10 > 𝑚1𝑐
2  and  

𝐸20 > 𝑚2𝑐
2  the equality (11.1) can be satisfied only 

if 𝑀 > 𝑚1 +𝑚2, i.e. a body can disintegrate 

spontaneously into parts the sum of whose masses is 

less than the mass of the body. On the other hand, if 

𝑀 < 𝑚1 +𝑚2, the body is stable (with respect to the 

particular decay) and does not decay spontaneously. 

To cause the decay in this case, we would have to 

supply to the body from outside an amount of energy 

at least equal to its binding energy‖ (Landau & 

Lifshitz, 1971).  

 

Landau and Lifshitz continue with discussing the 

conservation of momentum and energy in the decay 

process, arriving to determine uniquely the energies 

of the two emerging bodies. ―In a certain sense the 

inverse of this problem is the calculation of the total 

energy [mass] M of two colliding particles in the 

system of reference in which their total momentum is 

zero. … The computation of this quantity gives a 

criterion for the possible occurrence of various 

inelastic collision processes, accompanied by a 

change in state of the colliding particles, or the 

creation of new particles. A process of this type can 

occur only if the sum of the masses of the reaction 

products does not exceed M‖ (Landau & Lifshitz, 

1971). 

 

An example of mass additivity 

As an of mass additivity, let us pass to the Notes on 

Relativistic Dynamics, by Styer, 2021. ―Two-particle 

system. Two particles move on the x-axis. Particle A 

has mass mA and velocity (relative to frame F) vA, 

particle B has mass mB and velocity (relative to 

frame F) vB. a) Show that the two-particle system has 

mass M, where (4.3): 

𝑀2

= 𝑚𝐴
2 +𝑚𝐵

2

+ 2𝑚𝐴𝑚𝐵

1 − 𝑣𝐴 𝑣𝐵 𝑐2⁄

√(1 − (𝑣𝐴 𝑐⁄ )2)(1 − (𝑣𝐵 𝑐⁄ )2)
 

Frame F' moves relative to frame F at velocity V, so 

in this frame the two particles have velocities (4.4): 

𝑣′𝐴 =
𝑣𝐴 − 𝑉

1 − 𝑣𝐴 𝑉 𝑐2⁄
  and   𝑣′𝐵 =

𝑣𝐵 − 𝑉

1 − 𝑣𝐵 𝑉 𝑐2⁄
 

b) Show that in the frame F', the system has the same 

mass M given above‖ (Styer, 2021). 

Note that, in (4.3), when the velocities are all equals, 

the additivity is the usual one. 

 

Invariance 

For point b) in Styer, 2021, let us use WolframAlpha 

software and calculate: 

1 −
(𝑣𝐴 − 𝑉) (𝑣𝐵 − 𝑉) 𝑐2⁄

(1 − 𝑣𝐴 𝑉 𝑐2⁄ )(1 − 𝑣𝐵 𝑉 𝑐2⁄ )
 

It is equal to: 

𝐴 =
(𝑉2 − 𝑐2)(𝑣𝐴𝑣𝐵 − 𝑐2)

(𝑣𝐴𝑉 − 𝑐2)(𝑣𝐵𝑉 − 𝑐2)
 

And 

√(1 −
((𝑣𝐴 − 𝑉) 𝑐⁄ )2

(1 − 𝑣𝐴 𝑉 𝑐2⁄ )2
) (1 −

((𝑣𝐵 − 𝑉) 𝑐⁄ )2

(1 − 𝑣𝐵 𝑉 𝑐2⁄ )2
) 

It is equal to 

𝐵 = √
(𝑣𝐴

2 − 𝑐2)(𝑣𝐵
2 − 𝑐2)(𝑐2 − 𝑉2)2

(𝑣𝐴𝑉 − 𝑐2)2(𝑣𝐵𝑉 − 𝑐2)2
 

Therefore: 

𝐴 𝐵⁄ =

−(𝑐2 − 𝑉2)(𝑣𝐴𝑣𝐵 − 𝑐2)
(𝑣𝐴𝑉 − 𝑐2)(𝑣𝐵𝑉 − 𝑐2)

√
(𝑣𝐴

2 − 𝑐2)(𝑣𝐵
2 − 𝑐2)(𝑐2 − 𝑉2)2

(𝑣𝐴𝑉 − 𝑐2)2(𝑣𝐵𝑉 − 𝑐2)2

=
−(𝑣𝐴𝑣𝐵 − 𝑐2)

√(−𝑣𝐴
2 + 𝑐2)(−𝑣𝐵

2 + 𝑐2)
=

1 − 𝑣𝑎 𝑣𝑏 𝑐2⁄

√(1 − 𝑣𝐴
2 𝑐2⁄ )(1 − 𝑣𝐵

2 𝑐2⁄ )
 

 

Accordingly, we have invariance. 

 

Generalized mass additivity 

Let us pass to point a) in Styer, 2021, using (9.1)  𝑀 = [(∑
𝐸𝑖

𝑐2
𝑛
𝑖=1 )

2

− (∑
𝑝𝑖⃗⃗⃗⃗⃗

𝑐

𝑛
𝑖=1 )

2

]
1 2⁄

. 

Therefore: 

𝑀 = √(𝐸𝐴 𝑐2⁄ − 𝐸𝐵 𝑐2⁄ ) − (𝑝𝐴 𝑐⁄ + 𝑝𝐵 𝑐⁄ )2 

𝑀2 = (𝑚𝐴(1 − 𝑣𝐴
2 𝑐2⁄ )−1 2⁄ +𝑚𝐵(1 − 𝑣𝐵

2 𝑐2⁄ )−1 2⁄ )
2

− (𝑚𝐴(𝑣𝐴 𝑐⁄ )(1 − 𝑣𝐴
2 𝑐2⁄ )−1 2⁄ +𝑚𝐵(𝑣𝐵 𝑐⁄ )(1 − 𝑣𝐵

2 𝑐2⁄ )−1 2⁄ )
2
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𝑀2 = 𝑚𝐴
2(1 − 𝑣𝐴

2 𝑐2⁄ )−1 +𝑚𝐵
2(1 − 𝑣𝐵

2 𝑐2⁄ )−1 + 2𝑚𝐴𝑚𝐵(1 − 𝑣𝐴
2 𝑐2⁄ )−1 2⁄ (1 − 𝑣𝐵

2 𝑐2⁄ )−1 2⁄  −𝑚𝐴
2(𝑣𝐴 𝑐⁄ )2(1 −

𝑣𝐴
2 𝑐2⁄ )−1 −𝑚𝐵

2(𝑣𝐵 𝑐⁄ )2(1 − 𝑣𝐵
2 𝑐2⁄ )−1 − 2𝑚𝐴𝑚𝐵(𝑣𝐴 𝑣𝐵 𝑐2⁄ )(1 − 𝑣𝐴

2 𝑐2⁄ )−1 2⁄ (1 − 𝑣𝐵
2 𝑐2⁄ )−1 2⁄  

Then: 

𝑀2 = 𝑚𝐴
2 +𝑚𝐵

2 + 2𝑚𝐴𝑚𝐵

1 − 𝑣𝐴 𝑣𝐵 𝑐2⁄

√(1 − (𝑣𝐴 𝑐⁄ )2)(1 − (𝑣𝐵 𝑐⁄ )2)
 

This is a generalized additivity of masses in special 

relativity. The meaning is the following: this 

expression is making the additivity applicable in a 

wider manner. Generalization of additivity for integer 

numbers has been proposed in 2019 by Sparavigna. 

For what is regarding generalized entropies, see 

please Sparavigna, 2015. Note that the generalized 

additivity given in 2015 is quite different from the 

invariant expression given above. 

In the case that we have three particles:

 

𝑀2 = 𝑚𝐴
2 +𝑚𝐵

2 +𝑚𝐶
2 + 2𝑚𝐴𝑚𝐵

1 − 𝑣𝐴 𝑣𝐵 𝑐2⁄

√(1 − (𝑣𝐴 𝑐⁄ )2)(1 − (𝑣𝐵 𝑐⁄ )2)

+2𝑚𝐴𝑚𝐶

1 − 𝑣𝐴 𝑣𝐶 𝑐2⁄

√(1 − (𝑣𝐴 𝑐⁄ )2)(1 − (𝑣𝐶 𝑐⁄ )2)
+ 2𝑚𝐵𝑚𝐶

1 − 𝑣𝐵 𝑣𝐶 𝑐2⁄

√(1 − (𝑣𝐵 𝑐⁄ )2)(1 − (𝑣𝐶 𝑐⁄ )2)

 

In general: 

𝑀2 =∑𝑚𝑖
2

𝑛

𝑖=1

+∑ ∑ 𝑚𝑖𝑚𝑗

1 − 𝑣𝑖 𝑣𝑗 𝑐2⁄

√(1 − (𝑣𝑖 𝑐⁄ )2) (1 − (𝑣𝑗 𝑐⁄ )
2
)

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

 

That is: 

𝑀2 = ∑∑𝑚𝑖𝑚𝑗

1 − 𝑣𝑖 𝑣𝑗 𝑐2⁄

√(1 − (𝑣𝑖 𝑐⁄ )2) (1 − (𝑣𝑗 𝑐⁄ )
2
)

𝑛

𝑗=1

𝑛

𝑖=1

 

 

Hyperbolic geometry 

Let us introduce 𝑣 𝑐⁄ = tanh𝛽. Then 𝛾 = 1 √1 − tanh
2𝛽⁄ = cosh𝛽  (Dray, 2012). We have: 

𝑀2 =∑∑𝑚𝑖𝑚𝑗

𝑛

𝑗=1

𝑛

𝑖=1

cosh𝛽𝑖 cosh𝛽𝑗(1 − tanh𝛽𝑖 tanh𝛽𝑗) 

𝑀2 = ∑∑𝑚𝑖𝑚𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(cosh𝛽𝑖 cosh𝛽𝑗 − sinh𝛽𝑖 sinh𝛽𝑗) 

Consequently, when 𝛽𝑖 = 𝛽𝑗 = 𝛽, we find immediately  𝑀2 = ∑ ∑ 𝑚𝑖𝑚𝑗
𝑛
𝑗=1

𝑛
𝑖=1 . 

About the invariant 𝑀2 given above, let us consider frame F' moving relative to frame F at velocity V, so that in this 

frame:  

𝑀2 =∑∑𝑚𝑖𝑚𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(cosh𝛽′𝑖  cosh𝛽′𝑗 − sinh𝛽′𝑖  sinh𝛽′𝑗) 

with velocities: 

𝑣′𝑖
𝑐
=

(𝑣𝑖 − 𝑉) 𝑐⁄

1 − 𝑣𝑖 𝑉 𝑐2⁄
= tanh𝛽𝑖 − tanh𝛼   and     

𝑣′𝑗

𝑐
=

(𝑣𝑗 − 𝑉) 𝑐⁄

1 − 𝑣𝑗 𝑉 𝑐2⁄
= tanh𝛽𝑗 − tanh𝛼 

Using the properties: cosh
2𝛼 − sinh

2𝛼 = 1 , sinh(𝛽 − 𝛼) = sinh𝛽 cosh𝛼 − cosh𝛽 sinh𝛼,  cosh(𝛽 − 𝛼) =

cosh𝛽 cosh𝛼 − sinh𝛽 sinh𝛼,   it is easy to see that: 

𝑀2 = ∑∑𝑚𝑖𝑚𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(cosh𝛽𝑖 cosh𝛽𝑗 − sinh𝛽𝑖 sinh𝛽𝑗) 

We have again an invariant expression in the hyperbolic geometry. 
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