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Abstract: The pulsar profiles are profiles obtained by pulse sequences averaged on several cycles. The mean profiles are usually decomposed in 

Gaussian components, but decompositions in von Mises functions have been proposed too. The Gaussian decompositions can be based on the 
central limit theorem (CLT), so that a Gaussian component can be regarded as an attractor in the space of distributions with finite variance. Well-

known non-Gaussian attractors exist and are the Lévy distributions. Other proposed attractors are the q-Gaussian functions, which are 

generalizing the Gaussians in the Tsallis q-statistics. These functions have power-law tails. For parameter q equal to 1, the q-Gaussians become 
the standard Gaussian distributions. In this framework of Gaussian and non-Gaussian attractors, we propose decompositions of pulsar profiles 

both in Gaussian and q-Gaussian functions. Our investigation is aiming to compare the decompositions to highlight possible differences and 

dependences on q-parameters. Here we consider, in particular, the intensity profiles given by the EPN Database of Pulsar Profiles, of J1022+1001 
at several frequencies. Power-law behaviors of the leading edges have been observed.  
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Introduction 

The pulsar profiles, such as those available from the 

European Pulsar Network (EPN) Database, are 

profiles obtained by pulse sequences averaged on 

several cycles. The mean profiles are usually 

decomposed in Gaussian components. In Wahl et al., 

2023, for instance, we can find several examples of 

such decompositions. The Gaussian fitting procedure 

used by Wahl and coworkers was made according to 

Kramer, 1994, and Kramer et al., 1994. Besides 

Gaussians, the averaged profiles have been fitted to 

von Mises functions too, as in the work by Van der 

Wateren and coworkers, 2023. The von Mises 

distribution is also known as ―circular normal 

distribution‖ and it is a special case of the von 

Mises–Fisher distributions. At the basis of these 

decomposition, there is the general assumption that 

―the summation of many hundreds or thousands of 

pulses leads to a stable pulse profile that is 

characteristic of the pulsar‖ (Osłowski et al., 2011, 

mentioning Helfand, Manchester & Taylor 1975). 

Moreover, ―regardless of the original distribution, 

after a large number of pulses have been integrated, 

the central limit theorem applies and profile shape 

variations are well described by a multivariate 

normal distribution‖ (Osłowski et al., 2011). 

The use of the Gaussian approximation is common in 

the observations of spectral lines, where data are 

typically fitted to simplified models. Also in this case, 

―the central limit theorem suggests that …  the shape 

of the observed spectrum approaches a Gaussian‖ 

(Juvela and Tharakkal, 2024). However, as stressed 

by Juvela and Tharakkal, ―the observed spectra are 

rarely precisely Gaussian, and they can show 

asymmetries‖, and contain distinct components. ―The 

complexity is often addressed by fitting multiple 

Gaussians, … the sum of the fitted components 

approximates the observed line profile, and such 

multi-component fits can be used simply as a tool to 

estimate [relevant] quantities‖ (Juvela and Tharakkal, 

2024). In the case of the pulsar profiles, where the 

suggested approximation is the use of a mixture 

distribution of Gaussians, the presence of asymmetry 

had been stressed too (Dyks, 2017, ―The profiles are 

often highly asymmetric and have components with 

flux ratio which curiously evolves with frequency‖).  

According to the central limit theorem (CLT), the 

Gaussian functions are attractors in the space of 

distributions with finite variance. Besides the 

Gaussian attractors, the well-known Lévy 

distributions exist. Other proposed attractors are the 

q-Gaussian functions, which are generalizing the 

Gaussians in the Tsallis q-statistics. These functions 

have power-law tails. For parameter q equal to 1, the 

q-Gaussians become the standard Gaussian 

distributions. In this framework of Gaussian and non-

Gaussian attractors, here we propose decompositions 

of pulsar profiles both in Gaussian and q-Gaussian 

functions. The aim is that of comparing the 

decompositions to highlight possible differences and 

dependences on q-parameters.  

 

Gaussians on lines and circles 

According to the standard central limit theorem, the 

attractor in the distribution space is a Gaussian 

(Marsh et al., 2006). As told by Marsh and coworkers, 

―for independent systems, the attractor in probability 

space is a Gaussian, as studied by A. de Moivre 

(1733), P.S. de Laplace (1774), R. Adrain (1808) and 

C.F. Gauss (1809), when the variance of the single 

distribution is finite. If this variance diverges instead, 

the attractor is a Levy distribution, as studied by P. 
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Lévy and B.V. Gnedenko in the 1930‘s‖ (Marsh et al., 

2006; about the Lévy-Gnedenko limit theorem see 

Bianucci, 2021). Marsh and coworkers continue 

saying that, ―in the anomalous case (i.e., when global 

correlations are present), a variety of attractors have 

been conjectured or discussed, most notably the q-

Gaussian distribution. This distribution optimizes the 

entropy Sq [Tsallis entropy]‖ (Marsh et al., 2006, and 

references therein). The q-Gaussians are based on the 

q-exponential functions, proposed by Constantino 

Tsallis in 1988 for his generalization of Boltzmann-

Gibb statistics. As previously told, when the value of 

the q parameter goes to 1, the q-Gaussian becomes a 

Gaussian. Moreover, if the q-parameter is less than 

5/3, the variance of the distribution is finite. 

In 2006, Marsh and coworkers told that ―a formal 

development of a q-generalized Central Limit 

Theorem (q-CLT) [was] in progress‖. In 2008, 

Umarov et al. proposed a q-modified CLT. In this 

theorem, the constraint for the independent and 

identically distributed (i.i.d.) variables is modified 

according to the q-calculus. The independence is 

recovered as q → 1. This proof of the q-modified 

central limit theorem has been questioned by Hilhorst, 

2010. In 2011, C. Tsallis answered Hilhorst‘s 

observations. In any case, we have mentioned before 

the Lévy distribution as an attractor. According to the 

work by Deng, 2010, the q-Gaussian functions are 

mimicking the Lévy functions in a very good manner 

(Sparavigna, 2023), and therefore we could consider 

the q-Gaussians as approximations of Lévy attractors. 

Let us stress that a q-Gaussian becomes a Gaussian 

attractor when the value of the q-parameter is close to 

1. Let us also note that the Lévy distribution has an 

infinite variance, whereas the variance of the q-

Gaussian distribution is finite if q-parameter is less of 

5/3.  

In Mantegna and Stanley, 1999, we can find the 

Gaussian distribution defined as an attractor in the 

functional space of pdfs (probability distribution 

functions). ―The Gaussian distribution is a peculiar 

stable distribution; it is the only stable distribution 

having all its moments finite. It is then natural to ask 

if non-Gaussian stable distributions are also attractors 

in the functional space of pdfs. The answer is 

affirmative‖ [see discussion in Mantegna and 

Stanley], according to the Lévy-Gnedenko theorem. 

As concluded by Mantegna and Stanley, we have an 

infinite number of attractors in the functional space 

of pdfs. These attractors ―comprise the set of all the 

stable distributions‖. In the Figure 4.1 of the book by 

Mantegna and Stanley, we can see schematically 

some attractors and their convergences. ―An 

important difference is observed between the 

Gaussian attractor and the stable non-Gaussian 

attractors: finite variance random variables are 

present in the Gaussian basin of attraction, whereas 

random variables with infinite variance are present in 

basins of attraction of stable non-Gaussian 

distributions‖ (Mantegna & Stanley, 1999). 

―Stochastic processes with infinite variance are 

characterized by distributions with power-law tails. 

Hence such distributions with power-law tails are 

present in the stable non-Gaussian basins of 

attraction‖ (Mantegna & Stanley, 1999). It is 

important to note again that the q-Gaussian has a 

power-law tail, but for q < 5/3 the variance is finite. 

In Hilhorst, 2009, we can find the discussion of the 

symmetric and asymmetric Lévy cases. Being Lα,β 

the general Lévy distribution, when β is equal to zero 

we have the symmetric Lévy function, so that when α 

is one, the Lorentz-Cauchy case is obtained and when 

α is two, the Gaussian case is obtained. Hilhorst tells 

that, in the Limit Theorem, ―the Gaussian is an 

attractor under addition of independent identically 

distributed random variables … [The] Lévy 

distributions are attractors under addition of random 

variables, just like the Gaussian, and each has its own 

basin of attraction‖. ―Mathematicians tell us that 

there do not exist any other attractors, at least not for 

sums of independent identically distributed (i.i.d.) 

variables. However, suppose you add independent 

but non-identical variables. If they‘re not too 

nonidentical, you still get Gauss and Lévy 

distributions‖. To have a Gaussian, we need a 

condition which is known as the Lindeberg condition. 

In the case that the Lindeberg condition does not hold, 

we have a bell-shaped distribution which is neither 

Gaussian nor Lévy, ―but something in between‖ 

(Hilhorst, 2009).  

Both Lévy, Gaussians and q-Gaussians are 

distributions on the straight line. In the case of the 

pulsar profiles, we are on a circle, characterized by 

phases. Let us write the Gaussian as    (     ⁄ ),  
as it appears in Breitenberger, 1963, in his work 

about the analogues of the Normal Distribution on 

the Circle and the Sphere. Regarding the Gaussian on 

a straight line, Breitenberger tells that it is 

encountered in a variety of problems; ―when 

analogous problems are formulated on the circle, 

they assume different complexions. Take the central 

limit theorem: on the circle the addition of random 

variables (Lévy, 1939) leads to the uniform 

distribution (called ‗isotropic‘ by physicists and 

astronomers). …  Brownian motion on the circle … 

leads to a ‗wrapped-up normal‘ distribution, of the 

type  ∑     [ (     )  ⁄   ]"  (Breitenberger, 

1963). Breitenberger also notes that "the normal 

distribution has several defining properties involving 

a mean or variance; hence it must have various 

analogues on circle and sphere, according to the 

substitutes for mean and variance which one can 

invent." Being   an azimuth, von Mises (1918) 

obtained the distribution    [     (   )]  with   

positive. After being normalized, and with a central 

polar axis, the distribution is    (       )  ⁄    ( ), 
where x is the polar angle and    the modified Bessel 

function of the first kind. This is the von Mises 

distribution. In it, κ is the concentration parameter. If 



 
 
 
 
Gaussian and q-Gaussian Functions for the Decomposition of J1022+1001 Pulsar Profiles

 

 
 
http://www.ijSciences.com                        Volume 13 – June 2024 (06) 
 

 

 

20 20 

the distribution is highly concentrated, we can 

neglect the circularity and approximate the von-

Mises distribution as normal. 

 

The q-Gaussians 

Returning to the q-Gaussian functions, (Tsallis, 1988, 

Umarov et al., 2008, Hanel et al., 2009), they are 

given as  ( )     (   
 ), where   ( ) is the q-

exponential function and   a constant (in the 

exponent,    (   )⁄ ). The q-exponential has 

expression:   ( )  [  (   ) ]
 (   )⁄   (q is 

continuous real parameter). When q is going to 1, the 

q-exponential becomes the usual exponential 

function. The value q=2, (Naudts, 2009), corresponds 

to the Cauchy distribution, also known as the 

Lorentzian distribution. The change of q-parameter is 

allowing the q-Gaussian function to pass from the 

Gaussian to the Lorentzian distribution. In fact, we 

are passing from a distribution with a finite variance, 

when q is less than 5/3, to a distribution with infinite 

variance, for q equal or greater than 5/3 and lower 

than 2. In a previous discussion about 

decompositions of pulsar profiles, we have found 

cases where the q-Gaussians and their asymmetric 

versions can give very good results. However, is it 

better to use, for the pulsar profiles, a Gaussian or a 

non-Gaussian shape? 

 

The tails 

In Kramer et al., 1994, the studied profiles are 

decomposed in a sum of Gaussians. ―The assumption 

that single components in the pulsar profiles can be 

best represented by a Gaussian shape has been made 

by several authors‖. Among them we find 

Krishnamohan and Downs, 1983. In this mentioned 

research, we can find told that ―The observed change 

of the pulse profile with the intensity (Fig. 5 in 

Krishnamohan and Downs) suggests that there are 

several independently varying components present in 

the emission of [the studied] pulsar [Vela, PSR 0833 

— 45]. The spectral features discussed in § IIIb [by 

Krishnamohan and Downs], lend support to this 

hypothesis. Furthermore, the average pulse profile of 

this pulsar changes markedly with frequency, as do 

the profiles of many other pulsars‖. ―To decompose 

the pulse profiles, we need to know the shapes 

expected for the components. Unfortunately, an 

examination of strong individual pulses did not show 

any pulses that have only one component. The 

manner in which the trailing and the leading edges 

approached the baseline suggested that a Gaussian 

shape may be a good approximation for the average 

shape of each component‖ (Krishnamohan and 

Downs, 1983). Krishnamohan and Downs superpose 

the components according to their Eqs.(1) and (1a). 

The researchers performed a nonlinear least-squares 

model fitting of equation (1) to the data.  

The parameters obtained by the decomposition are 

used for modelling the emission. ―During the model 

fitting, it became clear that the tails of the 

components deviate slightly from Gaussians. Though 

they are too small to affect noticeably the pulse 

profile fits, the deviations affect the resultant position 

angles on the leading edge of the pulse profiles. This 

is because the intensity ratios determine the position 

angle at each pulse-longitude‖ (Krishnamohan and 

Downs, 1983, see the definition of the position angle 

therein).
1
 In conclusion, we have tails which are not 

Gaussians. Being not Gaussians, it means that they 

are power-law tails and therefore q-Gaussians are 

perfect for investigation. 

Here we consider the decomposition of some pulsar 

profiles at different frequencies. For the 

decomposition we use software Fityk by Wojdyr, 

2010. The specific case considered is that of the 

profiles of J1022+1001, given by the EPN Database 

of Pulsar Profiles. We try to maintain the number of 

components limited to five or six (see Sparavigna, 

2024, for reasons). In Fityk processing, we used the 

Levenberg–Marquardt and the Praxis methods for 

fitting. We decided to propose, of the two methods, 

the decomposition with is giving the lower WSSR. 

 

Interference mitigation 

Before decompositions, let us add what Bassa et al., 

2016, are telling about the ―interference mitigation‖. 

―In case of significant radio frequency interference 

(RFI), [Bassa and coworkers] have implemented two 

methods to clean the data. … The first form of RFI-

mitigation consists of selecting and masking 

frequency channels that contain narrow-band RFI. … 

A second technique can be applied to data containing 

time-varying RFI, or broadband RFI‖. The method 

distinguishes RFI ―on the premise that non-Gaussian 

amplitudes are caused by RFI‖. ―The amplitudes of 

RFI-contaminated samples are replaced by artificial 

Gaussian noise with the same variance as nearby 

samples, in order to maintain a constant noise level in 

the correlated amplitudes regardless of the number of 

telescopes contributing to each sample‖ (Bassa et al., 

2016). Then the non-Gaussian amplitudes are ruled 

out. So, once more, it is relevant to investigate 

decompositions in Gaussians and q-Gaussians.   

Condon and Ransom, 2016, remembering the first 

pulsar discovery in 1967, stress it as a ―warning 

against overprocessing data before looking at them, 

ignoring unexpected signals‖. ―As radio 

instrumentation and data-processing software 

become more sophisticated, more data are ―cleaned 

up‖ automatically before they reach the astronomer. 

Matched filtering that brings out the expected signal 

usually suppresses the unexpected‖. That is, non-

Gaussian signals are suppressed in the creation of the 

                                                 
1
 About the leading edge, in a discussion by R. I. 

Grynko, we can see an image illustrating it for a 

pulse with a Gaussian temporal profile. The pulse has 

an ―increasing intensity (positive slope) near its 

leading edge, and a decreasing intensity (negative 

slope) near the trailing edge‖. 

https://iris.polito.it/handle/11583/2989381
https://iris.polito.it/handle/11583/2989381
https://iris.polito.it/handle/11583/2989381
https://iris.polito.it/handle/11583/2989381
https://web.archive.org/web/20240614095757/https:/rossgrynko.com/NonlinearOptics.html
https://web.archive.org/web/20240614095757/https:/rossgrynko.com/NonlinearOptics.html
https://rossgrynko.com/images/intensity_time.jpg
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pulsar profiles. 

Regardless of whether q-Gaussians can be considered 

attractors or not, are q-Gaussians decompositions 

different from Gaussians decompositions? Here in 

the following some examples. 

 
Fig. 1 

 

Profiles of J1022+1001 

Let us start from the profile at 4850 MHz. Data 

courtesy Kijak et al., 1997. The data are given in the 

Figure 1. 

The figures that we are here proposing are 

screenshots of Fityk software. Data are given in 

green. The Gaussian or q-Gaussian components are 

given as red lines. The sum of the components is the 

yellow line. The lower part of the figure is showing 

the misfit, that is the difference between green data 

and the yellow line. In the Figure 1, we show all the 

data. From now on, only the part relevant to the 

profile is given.  

In the Fig.2 (left), five q-Gaussians have been used. 

WSSR (weighted sum of squared residuals) is equal 

to 469767. From left to right the q-parameters are: 

0.9999, 0.9992, 1.2166, 0.9992, and 0.9998. In fact, 

we have four Gaussians, but the main component is a 

q-Gaussian, with 1.2166. Let us change it into a 

Gaussian. The decomposition is given in the Fig.2 

(right). WSSR is equal to 469803. It seems the 

attractors are Gaussian functions. 

 

 

Fig.2 – 4850 MHz Pulsar Profile of J1022+1001 decompositions. 

 

Let us pass to the profile at 3100 MHz. Data courtesy Dai et al., 2015. In the Figure 3 (left), the decomposition is 

given using five q-Gaussians. WSSR is equal to 23.67. From left to right the q-parameters are: 1.1151, 1.3319, 

1.3131, 1.1456, and 1.0096. Let us change the components into Gaussians. The decomposition is given in the Fig.3 

(right). WSSR is equal to 25.38. Here we have the decomposition with q-Gaussians which has a lower WSSR value. 

However, the fits could be improved adding further components in both decompositions. Note that the two central 

components are rather different in the two decompositions. 

 

https://psrweb.jb.man.ac.uk/epndb/#kkwj97/J1022+1001/kkwj97.epn
https://fityk.nieto.pl/fit.html
https://psrweb.jb.man.ac.uk/epndb/#dhm+15/J1022+1001/J1022+1001_10cm.TF
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Fig.3 - 3100 MHz Pulsar Profile of J1022+1001 decompositions. The two decompositions are different in the 

central part. 

 

In the Figure 4 we consider the profile at 1443 Mhz. Data courtesy Kramer et al., 1998.  In the Fig.4 (left), five q-

Gaussians have q-parameters (from left to right): 1.0653, 1.0322 (large component), 1.4000 (small component), 

0.9999, and 1.06531. WSSR 0.03390. In the Fig.4 (right), WSSR 0.03607. Note that in the q-Gaussian 

decomposition, only the smallest component has a q value quite larger than 1.  

 

 

Fig.4 - 1443 MHz Pulsar Profile of J1022+1001 decompositions. Note that, on the right, the data are below the 

baseline. Therefore, we consider adjusting the baseline as in the following Fig.5.  

 

Fig.5 – 1443 MHz profile with baseline correction. Note that the leading edge and the central components are quite 

different. In fact, in the q-Gaussian decomposition, the leading-edge component has a q parameter equal to 1.89, 

clearly indicating a power-law behavior of the tail. 

In the case given in the Figure 4, we have the occasion to adjust the baseline. The result is given in the Figure 5 for 

the decomposition in q-Gaussians (on the left, WSSR is 0.0292, the leftmost component has q equal to 1.89) and 

Gaussians (on the right, WSSR is 0.0491). Let us pass to the profile at  1414 MHz. Courtesy Stairs et al., 1999. In 

the Figure 6, on the left, the q-Gaussians have parameters 1.4563, 1.4265, 0.9998, 1.2750 (WSSR 0.2315). On the 

https://psrweb.jb.man.ac.uk/epndb/#kxl+98/J1022+1001/kxl+98.epn
https://psrweb.jb.man.ac.uk/epndb/#stc99/J1022+1001/stc99_1414.epn
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right, the Gaussian decomposition has WSSR equal to 0.2394.  

 
Fig.6 - 1414 MHz Pulsar Profile of J1022+1001 decompositions. Note the different tails of the leading edges. 

The following Figure 7 is giving the q-Gaussian decomposition of the profile at 1392.5 MHz . Data courtesy Wahl 

et al., 2023.  

 

  
Fig.7 – 1392.5 MHz Pulsar Profile of J1022+1001 q-Gaussian decomposition. The values of the q-parameters are 

given in the figure. Only one component is different from a Gaussian. It is the same component as in the Figure 4. 

However, it seems that the baseline needs to be adjusted, because we must add a further leading small component 

on the left (with center at about 750 in the figure).  

 

In the Figure 8, the profile at 1369 MHz is given. Courtesy Dai et al., 2015. Note the presence of a small quasi-

Lorentzian component.  

 
Fig.8 – 1369 MHz Pulsar Profile of J1022+1001 q-Gaussian decomposition. The values of the q-parameters are 

given in the figure. Note the presence of a quasi-Lorentzian leading-edge component.  

 

 

 

https://psrweb.jb.man.ac.uk/epndb/#wrvo23/J1022+1001/J1022+1001.56577la0.asc
https://psrweb.jb.man.ac.uk/epndb/#dhm+15/J1022+1001/J1022+1001_20cm.TF
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In the Figure 9, we are giving the profile at 728 MHz. Data courtesy Dai et al., 2015. 

 

Fig.9 – 728 MHz Pulsar Profile of J1022+1001 q-Gaussian decomposition. The values of the q-parameters are 

given in the figure.  

 

The Figure 10 is showing the profile at 610 MHz. Data courtesy Stairs et al., 1999.  

 

 

Fig.10 – 610 MHz Pulsar Profile of J1022+1001 q-Gaussian decomposition. The values of the q-parameters are 

given in the figure. On the left: three q-Gaussians. Note that, due to the band of the misfit, it is a nonsense to add 

further components (it is better to avoid overfitting). However, if we observe the plot at the web page of EPN, we 

note that the L curve could be decomposed in more components. Then, let us try to add a further component to the 

proposed q-Gaussian decomposition. On the right, the data are fitted to four q-Gaussians. The misfit does not 

change. We can stress what is well-known is Raman spectroscopy, that the decomposition of spectra depends on the 

number of components and on the used line shape (Ferrari and Robertson, 2000, Meier, 2005).  

 

Let us pass to the case of the profile at 430 MHz (Fig.11). Courtesy Camilo et al. 1996. The case of profile at 410 

MHz is given in the Fig.12. Courtesy Stairs et al., 1999. In the Figure 13, the profile at 370 MHz is given. Data 

courtesy Sayer et al., 1997.  

 

 

https://psrweb.jb.man.ac.uk/epndb/#dhm+15/J1022+1001/J1022+1001_50cm.TF
https://psrweb.jb.man.ac.uk/epndb/#stc99/J1022+1001/stc99_610.epn
https://psrweb.jb.man.ac.uk/epndb/#stc99/J1022+1001/stc99_610.epn
https://psrweb.jb.man.ac.uk/epndb/#cnst96/J1022+1001/cnst96.epn
https://psrweb.jb.man.ac.uk/epndb/#stc99/J1022+1001/stc99_410.epn
https://psrweb.jb.man.ac.uk/epndb/#stc99/J1022+1001/stc99_410.epn
https://psrweb.jb.man.ac.uk/epndb/#snt97/J1022+1001/snt97.epn
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Fig.11 – 430 MHz Pulsar Profile of J1022+1001 q-Gaussian decomposition. The values of the q-parameters are 

given in the figure. A Gaussian decomposition is giving almost the same result. The only difference is in the power-

law of the leading-edge component. The q-parameter is equal to 1.1359 

 

 
Fig.12 – 410 MHz Pulsar Profile of J1022+1001 q-Gaussian decomposition. On the left: q-Gaussians. The values 

of the q-parameters are given in the figure. On the right: Gaussian components. A comparison with Fig.11 shows a 

relevant change in the role of the middle components.  

  

 
Fig.13 – 370 MHz Pulsar Profile of J1022+1001 q-Gaussian decomposition. On the left: q-Gaussians. The values 

of the q-parameters are given in the figure. On the right: Gaussian components. Note the presence of an oscillation 

of the baseline. 
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The last case that we considered is the profile at 325.9 MHz . Data courtesy Wahl et al., 2023.  

 
Fig.14 – 325.9 MHz Pulsar Profile of J1022+1001 q-Gaussian decomposition. On the left: q-Gaussians. The values 

of the q-parameters are given in the figure. On the right: Gaussian components. Also in this case, the leading 

component has a power-law tail.  

 

Discussion about J1022+1001 

In the previously given decompositions of the 

J1022+1001 profiles we have a variety of cases 

where the q-Gaussians have values of the q-

parameters close to 1. It means that the q-Gaussians 

are quasi-Gaussian functions. Therefore, we could 

guess Gaussian attractors for these distributions. 

However, we have also cases where the q-parameter 

is substantially different from 1. In fact, deviations 

from the Gaussian behavior of the tails of pulsar 

profile have been already noted by Krishnamohan 

and Downs, 1983. Using the q-Gaussian functions we 

can quantify it.  

About pulsar J1022+1001, from Padmanabh et al., 

2021, we know that it ―is a binary pulsar with a spin 

period of 16.45 ms in a 7.8-day orbit (Camilo et al. 

1996) with a white dwarf companion (Lundgren et al. 

1996). The average pulse profile exhibits a two 

peaked structure at 1.4 GHz. The pulsar is currently a 

part of the European Pulsar Timing Array (EPTA) 

and the Parkes Pulsar Timing Array (PPTA) among 

other pulsars in the quest to detect nanohertz 

gravitational waves‖. However, ―several studies 

across many years using different telescopes have 

shown conflicting results regarding the pulse profile 

stability of this pulsar‖ (Padmanabh et al., 2021). 

The pulsar J1022+1001 is therefore relevant for the 

reasons given in Padmanabh et al., 2021. 

―Millisecond pulsars in timing arrays can act as 

probes for gravitational wave detection and 

improving the solar system ephemerides among 

several other applications. However, the stability of 

the integrated pulse profiles can limit the precision of 

the ephemeris parameters and in turn the applications 

derived from it. It is thus crucial for the pulsars in the 

array to have stable integrated pulse profiles‖. 

Padmanabh and coworkers ―evidence for long-term 

profile instability in PSR J1022+1001 … this 

intrinsic variability in the pulse shape persists over 

time scales of years‖. The researchers suggest 

―additional intrinsic effects as the origin for the 

variation‖. Padmanabh and coworker stress that, to 

detect gravitational waves in the nanohertz regime, 

relevant ―is the technique of pulsar timing where the 

arrival time of the pulsar signal is monitored by 

comparison against a reference template of the 

average pulse profile. Here, typically, tens of 

thousands of pulses are averaged to form an 

integrated profile. A template is generated from such 

integrated profiles across many observations. In order 

to avoid self-imaging effects (Hotan et al. 2005), the 

grand average profile is often converted into a 

template by modelling the pulse as a superposition of 

multiple Gaussians or von Mises functions. This 

noise free template is then used as a reference and 

cross correlated with profiles from each epoch to 

calculate the times of arrival (TOAs)‖. Please 

consider the detailed discussion of the modified 

Hotan method that the researchers used to investigate 

the stability of the J1022+1001 profile. About the 

integrated profiles and templates, see please the 

discussion at pag.127, in Keane, 2010.  

In Hotan et al., it is noted that Gaussians have 

Fourier transforms, which are Gaussian functions too. 

Therefore, these functions can be easily used for the 

elaboration of the signals, and the creation of a final 

template profile. Then, when we consider pulsar 

profiles, which have been obtained from the 

integration of many cycles, we could encounter 

profiles elaborated as Gaussian templates. 

Consequently, a decomposition could give just 

Gaussian results, with the difficulty to find deviation 

from the Gaussian line shapes. However, in some 

cases seen above, differences exist. Actually, 

Krishnamohan and Downs already observed 

deviations from the Gaussian behavior of the tails.  
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