Antireflective Coating Nanocrystalline α-Fe2O3 Layer for Solar Cell Applications

Antireflective Coating Nanocrystalline α-Fe2O3 Layer for Solar Cell Applications

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Marwa Fathy, Ahmed I. Omran, Waheed A. Badway

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.985 370 879 127-132 Volume 5 - Mar 2016

Abstract

A new antireflective nano-coating of α-Fe2O3 for glass surfaces using dip-coating technique working in the visible and near infrared optical spectrum was developed and characterized. α-Fe2O3 nanoparticles were synthesized by hydrothermal process. Thermal transformation strategy is designed to transfer β-FeOOH into α-Fe2O3. The structure and morphology of the iron oxide nanoparticles were analyzed by XRD, FTIR, and SEM. Optical properties of antireflective coatings (ARC) deposited from ethanolic solution of α-Fe2O3 have been characterized. 93.4 % optical transmittance using optimal dip coating conditions (dipping rate – 3 cm/10 sec, coating time – 5min, and temperature – 25 ºC) for annealed powder at 300 °C for 1 hr.

Keywords

Antireflective coating, α-Fe2O3, dip coating, optical properties

References

  1. 1- Joo W, Kim Y, Jang S, Kim JK. Antireflection coating with enhanced anti-scratch property from nanoporous block copolymer template, Thin Solid Films, 2011; 519: 3804–3808.
  2. 2- Min WL, Jiang B, Jiang P, Bioinspired self-cleaning antireflection coatings”, Adv. Mater., 2008;20: 3914–3918.
  3. 3- Li Y, Li F, Zhang J, Wang C, Zhu S, Yu H, Wang Z, Yang B, Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces, Appl. Phys. Lett. 2010;96: 153305-153307.
  4. 4- Kuo ML, Poxson DJ, Kim YS, Mont FW, Kim JK, Schubert EF, Lin SY, Realization of a near-perfect antireflection coating for silicon solar energy utilization, Opt. Lett. 2008;33: 2527–2529.
  5. 5- Raut HK, Ganesh VA, Nair AS, Ramakrishna S, Anti-reflective coatings: a critical, in-depth review, Energy Environ. Sci. 2011;4: 3779–3804.
  6. 6- Mu Q, Li Y, Wang H, Zhang Q, Self-organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings, Colloid and Interface Science, 2012;365: 308–313.
  7. 7- Lu Y, Zhang X, Huang J, Li J, Wei T, Lan P, Yang Y, Xu H, Song W, Investigation on antireflection coatings for Al:ZnO in silicon thin film solar cells, International Journal for Light and Electron Optics, 2013;124: 3392–3395.
  8. 8- Biswas PK, Devi PS, Chakraborty PK, Chatterjee A, Ganguli D, Kamath MP, Joshi AS, Porous anti-reflective silica coatings with a high spectral coverage by sol–gel spin coating technique, J. Mater. Sci. Lett. 2003;22: 181–183.
  9. 9- Zhang QY, Wang J, Wu G, Shen J, Buddhudu S, Interference coating by hydrophobic aerogel-like SiO2 thin films, Mater. Chem. Phys., 2001;72: 56–59.
  10. 10- Nostell P, Roos A, Karlsson B, Optical and mechanical properties of sol–gel antirefective films for solar energy applications, Thin Solid Films 1999;351: 170–175.
  11. 11- Uhlmann DR, Suratwala T, Davidson K, Boulton JM, Teowee G, Sol–gel derived coatings on glass, J. Non-Cryst. Solids, 1997;218: 113–122.
  12. 12- Hiller J, Mendelsohn JD, Rubner MF, Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers, Nat. Mater. 2002;1: 59–63.
  13. 13- Rouse JH, Ferguson GS, Preparation of thin silica films with controlled thickness and tunable refractive index, J. Am. Chem. Soc. 2003;125: 15529–15536.
  14. 14- Koo, HY, Yi, DK, Yoo, SJ, Kim, DY, A snowman-like array of colloidal dimmers for antireflecting surfaces, Adv. Mater., 2004;16: 274-277.
  15. 15- Chen HL, Chuang SY, Lin YH, Using colloidal lithography to fabricate and optimize sub–wavelength pyramidal and honeycomb structures in solar cells, Opt. Express, 2007;15: 14793–14803 .
  16. 16- Dimitrov AS, Miwa T, Nagayama K, “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles, Langmuir 1999;15: 5257–5264.
  17. 17- Almeida TP, Fay M W, Zhu YQ, Brown PD, Process map for the hydrothermal synthesis of α-Fe2O3 nanorods, J. Physical Chemistry C, 2009;113: 18689-18698.
  18. 18- Guskos N, Papadopoulos GJ, Likodimos V, Patapis S, Yarmis D, Przepiera A, Majszczyk J, Typek J, Wabia M, Aidinis K, Drazek Z, Photoacoustic, EPR and electrical conductivity investigation of three synthetic mineral pigments: hematite, goethite and magnetite, Mater. Res. Bull., 2002;37: 1051-1061.
  19. 19- Liu H, Wei Y, Sun Y, Preparation of lepidocrocites with different degrees of crystallization and their photocatalytic properties, J. Mol, Catal, A: Chem. 2005;226: 135–140.
  20. 20- Brice-Profeta S, Arrio MA, Tronc E, Menguy N, Letard I, Cartier dit Moulin C, Nogue`s M, Chaneac C, Jolivet JP, Sainctavit Ph. Magnetic order in γ-Fe2O3 nanoparticles : a XMCD study, J. Magnetism and Magnetic Materials 2005;288: 354–365.
  21. 21- Bondioli F, Ferrari AM, Leonelli C, Manfredini T, Monoferrite BaFe2O4 applied as ceramic pigment CMDM, Mater. Res. Bull. 1998;32: 723–729.
  22. 22- Pelino M, Colella C, Cantalini C, Faccio M, Ferri G, D’Amico A, “Strontium-doped hematite as possible humidity sensing material for soil water content determination, Sens. Actuat. B: Chem. 1992;7: 464–469 .
  23. 23- Flynn Jr, CM, Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compound, Chem. Rev. 1984;84: 31–41.
  24. 24- Wang X, Ammonium mediated hydrothermal synthesis of nanostructured hematite (α-Fe2O3) particles”, Materials Research Bulletin 2012;47: 2513–2517.
  25. 25- Almeida T, Hydrothermal synthesis and characterisation of α-Fe2O3 nanorods, Doctoral Thesis, University of Nottingham, (2010).
  26. 26- Uvarov V, Popov I, Metrological characterization of x-ray diffraction methods for determination of crystallite size in nano-scale materials, Materials Characterization, 2007;58: 883–891.
  27. 27- Li B, Wang X, Yan M, Li L, Preparation and characterization of nano-TiO2 powder, Materials Chemistry and Physics, 2002;78: 184–188.
  28. 28- Kashyout AB, Soliman M, Fathy M, Effect of preparation parameter on the properties of TiO2 nanoparicles for dye sensitized solar cells, Renewable Energy 2010;35: 2914-2920.
  29. 29- Sun P, You L, Wang D, Sun Y, Ma J, Lu G, Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods, Sensors and Actuators B 2011;156: 368–374.
  30. 30- Ristic M, Music S, Godec M, Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions, J. Alloys and Compounds, 2006;417: 292–299.
  31. 31- Wang F, Qin XF, Meng YF, Guo ZL, Yang LX, Ming YF, Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles, Materials Science in Semiconductor Processing, 2013;16: 802–806.
  32. 32- Song H, Zhang X, Chen T, Jia X, One-pot Synthesis of Bundle-like β-FeOOH Nanorods and their Transformation to Porous α-Fe2O3 Microspheres, Ceramics International, 2014;40: 15595-15602.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper