Composition of Secondary Metabolites in Mexican Plant Extracts and Their Antiproliferative Activity towards Cancer Cell Lines

Composition of Secondary Metabolites in Mexican Plant Extracts and Their Antiproliferative Activity towards Cancer Cell Lines

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Armida Andrea Gil Salido, Simon Bernard Iloki Assanga, Lidianys María Lewis Luján, Daniela Fernández Ángulo, Claudia Lizeth Lara Espinoza, Ana Lílian Acosta Silva, José Luis Rubio Pino

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.971 526 1097 63-77 Volume 5 - Mar 2016

Abstract

Background: Throughout the years humanity has used plants to treat different illnesses. Plants have several secondary metabolites such as phenol compounds, which have important biological activities. In this work, we evaluated the phytochemical screening, the phenol content and the antiproliferative activity of nine methanolic plants extract: Bucida buceras, Haemotoxylon brasiletto, Bursera hindsiana, Bursera microphylla, Ambrosia ambrosioides, Phoradendron californicum, Annona muricata, Morinda citrifolia, and Larrea tridentata, in murine cell lines: RAW 264.7 and L929; and human cell lines: A549, HeLa, 22Rv-1, BxPc-3, LS-180 and ARPE-19. Methods: The type metabolites in the sample were evaluated in a phytochemical screening. The phenols content present in the plant was evaluated by the Folin-Ciocalteu´s method and the antiproliferative activity wad determinate by MTT method, searching the IC50 value in each extract for each cell line. Results: The most abundant secondary metabolites in these plants were lactonic groups, saponins, phenols/tannins and flavonoids. The phenolic content fell in a range from 43.11 ± 6.22 to 827.74 ± 3.48 µgGAE/mg, the order from best to worst was: P. californicum (oak) > L. tridentata > B. buceras > H. brasiletto > B. microphylla > B. hindsiana > P. californicum (mesquite) > A. ambrosioides > A. muricata > M. citrifolia. While the better extracts in antiproliferative activity were: A. muricata, B. buceras, L. tridentata, H. brasiletto (range from 13.35 ± 0.74 to 163.73 ± 8.42 µg/mL), showing IC50 value similars to the cisplatin drug in the different cell lines. Conclusions: In this study was possible observe that the richest plants in secondary metabolites were B. buceras, H. brasiletto, B. hindsiana, M. citrifolia and P. californicum. The plant extract with the highest phenolic content was P. californicum of oak. While in the antiproliferative activity the best extracts were: A. muricata and L. tridentata in murine and human cell lines, and also B. buceras and H. brasiletto only in the case of human cell lines.

Keywords

Antiproliferative activity, Medicinal plants, Cancer, Phenolic content, Phytochemical screening.

References

  1. Kwon H, Hwang J, So J, Lee C, Sahoo A, Ryu J, Kyung W, Seob B, Im C, Haeng S, Yong S, Im S: Cinnamon extract induces tumor cell death through inhibition of NFB and AP1. BMC Cancer. 2010; 10: 392.
  2. Lü JM, Nurko J, Weakley S, Jian J, Kougias P, Lin P, Yao Q, Chen Ch: Molecular mechanisms and clinical aplications of nordihydroguaiaretic acid (NDGA) and its derivates: An uptade. Med. Sci. Monit. 2010, 16: RA93 – RA100.
  3. Quispe M, Callacondo D, Rojas J, Zavala D, Posso M, Vaisberg A: Actividad Citotóxica de Physalis Peruviana (Aguaymanto) en cultivos celulares de Adenocarcinoma Colorectal, Próstata y Leucemia mieloide crónica. Rev. Gastroenterol. Peru. 2009, 29, 239 – 246.
  4. Damián-Badillo L, Salgado-Garciglia R, Martínez-Muñoz R, Martínez-Pacheco M: Antifungal properties of some mexican medicinal plants. Open Nat. Prod. J. 2008, 1, 27-33.
  5. Vega M, Rivas C. Verde J, Oranday A, Rubio M, Nuñez M, Serrano L: Antimicrobial activity of five plants from Northem Mexico on medically import bacteria. Afr. J. Microbiol. Res. 2013, 7, 5011-5017.
  6. Crozier A, Clifford M, Ashihara H: Plant Secondary Metabolites. Phenols, polyphenols and Tannins: An Overview. In Ocurrence, Structure and Role in the Human Diet. 1st ed. Blackwelll publishing, Singapore, 2006; pp. 1-2.
  7. Mazid M, Khan T, Mohammad F: Role of secondary metabolites in defense mechanisms of plants. Biol. Med. 2011, 3, 232-249.
  8. Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha M, Spencer J: Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106-1131. .
  9. Dai J, Mumper R: Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313-7352.
  10. Avinde, B.; Omogbai, E.; Ikpefan, E. Comparative citotoxic and antiproliferative effects of Persea Americana mill (Lauraceae) leaf, steam and root barks. Niger. J. Pharm. Sci. 2011. 10, 16-26.
  11. Cadeña-Iñiguez J, Soto-Hernández M, Torres-Salas A, Aguiñiga-Sanchez I, Ruíz-Posadas L, Rivera-Martínez A, Avendaño-Arrazate C, Santiago-Osorio E: The antiproliferative effect of chayote varieties (Sechium edule (Jacq) Sw) on tumor cell lines, J. Med. Plants Res. 2013, 7, 455-460.
  12. Caldwell D: Staining Associated with Oshorn Bucida (“Black Olive”) Trees (Bucida buceras): The caterpillar and Eriophyid Mite Connection. Proc. Fla. State Hortic. Soc. 2008, 121, 360-362.
  13. Morton J: The black olive (Bucida buceras L.), a tropical timber tree has many faults as an ornamental. Proc. Fla. State Hortic. Soc. 1993, 106, 338-342.
  14. Hayashi K, Nakanishi Y, Bastow K, Cragg G, Nozaki H, Lee K: Antitumor Agents. Part 212: Bucidarasins A-C, three new cytotoxic clerodane diterpenes form Bucida buceras, Bioorg. Med. Chem. Lett. 2002, 12, 345-348.
  15. Hayashi K, Nakanishi Y, Bastow K, Cragg G, Nozaki H, Lee K: Antitumor Agents. 221. Buceracidins A and B, Two New Flavanones from Bucida buceras. J. Nat. Prod. 2003, 66, 125-127.
  16. Mahlo S, Chauke H, McGaw L, Eloff J:. Antioxidant and antifungal activity of selected plant species used in traditional medicine. J. Med. Plants Res. 2013, 7, 2444-2450.
  17. Rivero-Cruz, F. Antimicrobial compounds isolated from Haematoxylon brasiletto. J. Etnopharmacol. 2008, 199, 99-103.
  18. Johnson, D.; Moreno, S.; López, R: Compendio fitoquímico de la medicina tradicional herbolaria de Sonora. Universidad de Sonora. 1996, pp. 47-48, 50, 87.
  19. Robles-Zepeda R, Coronado-Aceves E, Velázquez-Contreras C, Ruíz-Bustos E, Navarro-Navarro M, Garibay-Escobar: A. In vitro anti-mycobacterial activity of nine medicinal plants used by ethnic groups in Sonora, Mexico. BMC Complement. Alt. Med. 2013, 13, 329.
  20. Jiménez-Estrada M, Velázquez-Contreras C, Garibay-Escobar A, Sierras-Canchola D, Lapisco-Vázquez R, Ortiz-Sandoval C, Burgos-Hernández A, Robles-Zepeda R: In vitro antioxidant and antiproliferative activities of plants of the ethnopharmacopeia from northwest of Mexico. BMC Complement. Alt. Med. 2013, 13, 12.
  21. Gajalakshmi S, Vijayalakhmi S, Devi Rajeswari V: Phytochemical and pharmacological properties of Annona muricata: a review. Int. J. Pharm. Pharm. Sci. 2012, 4, 3-6.
  22. Pieme C, Kumar CS, Dongmo M, Moukette B, Boyoum F, Ngogang J, Saxena A: Antiproliferative activity and induction of apoptosis by Annona muricata (Annonaceae) extract on human cancer cell. BMC Complement. Alt. Med. 2014, 14, 516.
  23. Iloki S, Lewis L, Rivera-Castañeda E, Gil-Salido A, Acosta-Silva A, Meza-Cueto C, Rubio-Pino J: Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (noni) grown in Mexico (with track change). Afr. J. Biotechnol. 2013, 12, 4630-4639.
  24. Kumar S, Saravanan M, Illanchezian S: Antibacterial, antifungal and Tumor cell suppression potential of Morinda citrifolia fruit extracts. Int. J. of Integr. Biol. 2008, 3, 44-49.
  25. Yang J, Gadi R, Thomson T: Antioxidant capacity, total phenols, and ascorbic acid content of noni (Morinda citrifolia) fruits and leaves at various stages of maturity. Micronesica, 2011, 41, 167-176.
  26. Martins S, Aguilar C, Teixeira J, Mussatto S: Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Sep. Purif. Technol. 2012, 88, 163-167.
  27. Chhabra S, Ulso F, Mshiu E: Phytochemical screening of Tanzanina medicinal plants. Int. J. Ethnopharmacol. 1984, 11, 157-159.
  28. Ilok S, Gil-Salido A, Lewis L, Rosas A, Acosta-Silva A, Rivera-Castañeda E, Rubio-Pino J: Cell growth curves for different cell lines and their relationship with biological activities. Int. J. Biotechnol. Mol. Biol. Res. 2013, 4, 60-70.
  29. Singleton VL, Rossi JA: Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1956, 16, 144-158.
  30. Lewis L.; Iloki S, Rivera E, Gil A, Acosta A, Meza C, Rubio J: Nutriotional and Phenolic composition of Morinda citrifolia L. (Noni) fruit at different ripeness stages and seasonal patterns harvested in Nayarit, Mexico. Int. J. Nutr. Food Sci. 2014, 3, 421-429.
  31. Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55-63.
  32. Quispe M, Zavala C, Rojas C, Posso R, Vaisberg W: Efecto citotóxico selectivo in vitro de muricin H (acetogenina de Annona muricata) en cultivos celulares de cáncer de pulmón. Rev. Peru. Med. Exp. Salud Pública, 2006, 23, 265-269.
  33. Bhatnagar S, Sahoo S, Kumar A, Ranjan D: Phytochemical analysis, antioxidant and cytotoxic activity of medicinal plant Combretum roxburghii (Family: Combretacea). Int. J. Drug Dev. Res. 2012, 4, 193-202.
  34. Beltrán D, Díaz F, Gómez H: Tamizaje fitoquímico preliminar de especies de pantas promisorias de la costa atlántica colombiana. Rev. Cubana Plant. Med. 2013, 18, 619-631.
  35. Vimala J, Leema A, Raja S: A study on the phytochemical analysis and corrosion inhibition on mild steel by Annona Muricata L leaves extract in 1 N hydrochloric acid. Der Chemica Sinica. 2012, 3, 582-588.
  36. Vijayameena C, Subhashini G, Loganayagi M, Ramesh B: Phytochemical screening and assessment of antibacterial activity for the bioactive compounds in Annona muricata. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 1-8.
  37. Nagalingam S, Sasikumar C, Cherian M: Extraction and Preliminary Phytochemical screening of active compounds in Morinda citrifolia fruit. Asian J. Pharm. Clin. Res. 2012, 5, 179-181.
  38. García R, Valdez B, Schorr W, Carrillo B, Zlatev K, Stoytcheva S, Ramos I, Vargas O, Terrazas G: Aqueous Extract of Creosote Bush (Larrea tridentata) Leaves as Green Inhibitor for Carbon Steel in Hydrochlor ic Acid Solution. Int.l J. Electrochem. Sci. 2013, 8, 6433 – 6448.
  39. Ruiz-Martínez J, Ascacio J, Rodriguez R, Morales D, Aguilar D: Phytochemical screening of extracts from some Mexican plants used in traditional medicine. J. Med. Plants Res. 2011, 5, 2791-2797.
  40. Shahriar M, Akhter S, Hossain M, Haque M, Bhuiyan M: Evaluation of in vitro antioxidant activity of bark extracts of Terminalia arjuna. J. Med. Plants Res. 2012, 6, 5286-5298.
  41. Hazra B, Sarkar R, Biswas S, Mandal N: Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement. Altern. Med. 2010, 10, 20.
  42. Annegowda H, Wee C, Mordi M, Ramanathan S, Mansor S: Evaluation of Phenolic Content and Antioxidant Property of Hydrolysed Extracts of Terminalia catappa L. Leaf. Asian J. Plant Sci. 2010, 9, pp. 479-485.
  43. Manzano P, Miranda M, Gutiérrez Y, García G, Orellana T, Orellana A: Efecto antiinflamatorio y composición química del aceite de ramas de Bursera graveolens Triana & Planch. (palo santo) de Ecuador. Rev. Cubana Plant. Med. 2009, 14, 45-53.
  44. Gomes de Melo J, de Sousa T, Nobre V, Vasconcelos D, Desterro M, Carneiro S, Cavalcanti E, de Albuquerque U: Antiproliferative Activity, Antioxidant Capacity and Tannin Content in Plants of Semi-Arid Northeastern Brazil. Molecules, 2010, 15, 8534-8542.
  45. Quispe A, Zavala D, Posso M, Rojas J, Vaisberg A: Efecto citotóxico de Annona muricata (guanabana) en cultivo de líneas celulares de adenocarcinoma gástrico y pulmonar. CIMEL, 2007, 12, 19-22.
  46. do Santo M, Nunez C, Dorigan H: A new method for quantification of total polyphenol content in medicinal plants based on the reduction of Fe(III)/1,10-phenaolthroline complexes. Adv. Biol. Chem. 2013, 3, 523-535.
  47. Soo Park M, De Leon M, Devarajan P: Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J. Am. Soc. Nephrol. 2002, 13, 858-865.
  48. Florea A, Büsselberg D: Cisplatin as an Antitumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers, 2011, 3, 1351-1371.
  49. Miller R, Tadagavadi R, Ramesh G, Reeves W: Mechanism of Cisplatin Nephrotoxicity. Toxins, 2010, 2, 2490-2518.
  50. Yilmaz U,; Polat G, Anar C, Halilcolar H: Carboplatin plus etoposide for extensive stage small-cell lung cancer: An experience with AUC 6 doses of carboplatin. Indian J. Cancer, 2011, 48, 454-459.
  51. Arteaga S, Andrade-Cetto A, Cardenas R: Larrea Tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J. Ethnopharmacol. 2005, 98, 231-239.
  52. Martins S, Amorim E, Peixoto T, Saraiva A, Pisciottano M, Aguilar C, Teixeira J, Mussatto S: Antibacterial activity of crude methanolic extract and fractions obtained from Larrea tridentata leaves. Ind. Crop Prod. 2013, 41, 306-311.
  53. Soriano A, Helfrich B, Chan D, Heasley L, Bun P, Chou TC: Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res. 1999, 59, 6178-6184.
  54. Sanchez-Marroquin A, Garcia L, Mendez M: Brazilin, antibacterial substance from Haematoxylon brasiletto. Rev. Latinoam. Microbiol. 1958, 1, 225-232.
  55. Quintanilla-Licea R, Mata-Cárdenas B, Vargas-Villarreal J, Bazaldúa-Rodríguez A, Ángeles-Hernández I, Garza-González J, Hernández-García E: Antiprotozoal Activity against Entamoeba histolytica of Plants Used in Northeast Mexican Traditional Medicine Bioactive Compounds form Lippia graveolens and Ruta chalepensis. Molecules, 2014, 19, 21044-21065.
  56. Cole JR, Bianchi E, Tumbull ER: Antitumor agents from Bursera microphylla (Burseracee) II: Isolation of a new lignin–Burseran. J. Pharm. Sci. 1969, 58, 175-176.
  57. Furusawa E, Hirazumi A, Story S, Jenson J: Antitumor potential of polysaccharide-rich substance from the fruit juice of Morinda citrifolia (noni) of sarcoma 180 ascites tumour in mice. Phytother. Res. 2003, 17, 1158-1164.
  58. Su BN, Pawlus A, Jung H, Keller W, WcLaughlin J, Kinghorn A: Chemical constituents of the fruits of Morinda citrifolia (noni) and their oxidant activity. J. Nat. Prod. 2005, 68, 592-595.
  59. Hirazumi A, Furusawa E: An immunomodulatory polysaccharide-rich substance from the fruit juice of Morinda citrifolia (noni) with antitumor activity. Phytother. Res. 1999. 13, 380-387.
  60. Arpornsuwan T, Punjanon T: Tumor Cell-selective antiproliferative effect of the extract from Morinda citrifolia fruits. Phytother. Res. 2006, 20, 515-517.
  61. Booth G, Malmstrom R, Kipp E, Paul A: Cytotoxicity of Selected Medicinal and Nonmedicinal Plant Extract to Microbial and Cervical Cancer Cells. J. Biomed. Biotechnol. 2012, 2012, 1-4. Article ID 106746, DOI:10.1155/2012/106746
  62. Zhang P, Zhang Z, Zhou X, Qiu W, Chen F, Chen W: Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line. BMC Cancer, 2006, 6, 224.
  63. Andriani F, Perego P, Carenini N, Sozzi G, Roz L: Increased Sentitivity to Cisplatin in Non-small Cell Lung Cancer Cell Lines after FHIT Gene Transfer. Neoplasia, 2006, 8, 9-17.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper