Download Full PDF
Read Complete Article
~ 414
` 1147
a 1-6
Volume 3 - Aug 2014
Abstract
The simulation of the electronic structure of aluminum arsenide nanocrystals (ncs) by means of Ab-initio restricted Hartree-Fock (HF) method within the large unit cell (LUC) formalism has been carried out in the present work . Gaussian 03 package is used to study the AlAs ncs with 8, 16, 54, 64 and 128 core atoms in the wavelength range (0.229-0.274) µm. Results shows the dependency of the number of core atoms on the structural and electronic properties of the AlAs ncs. The no. of core atoms is proportional to cohesive energy, the density of states and the energy gap. Other properties such as total energy, lattice constant and the ionicity inversely depends of the no. of core atoms. More stability values for both energy gap and lattice constant was found beyond 64 core atoms.
Keywords
AlAs ncs, Ab-initio, Hartree-Fock, LUC
References
- I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)
- T. Ohnuma, M. Nagano, Jpn. J. Appl. Phys. 39 (2000) L972
- J. Ihm and J. D. Joannopoulos, Phys. Rev. 58, RI (1981)
- C. G. Van de walle and R. M. Martin, Phys. Rev. B 35, 8159 (1987)
- S. Ciraci, I. P. Batra, Phys. Rev. Lett. 58, 14 (1987)
- D. M. Wood, S. H. Wei, and A. Zunger, phys. Rev. Lett. 58, 1123 (1987)
- S. H. Wei and A. Zunger, Phys. Rev. Lett. 59, 144 (1987)
- B. I. Min, S. Massidda and A. J. Freeman, Phys. Rev. B 38, No.3 (1988)
- M. Z. Huang, W. Y. Ching, Phys. Rev. B 47 (1993) 9449
- S. Zh. Karaahanov, L.C. Yan Voon, semiconductors 39, 2 (2005) 161
- F. Annane, H. Meradji, S. Ghemid and F. El Haj Hassan, Computational Materials science, 50 (2010), 274-278
- Philip Phllips "advanced solid state physics", Cambridge University press, second edition (2012)
- Steven M. Bachrach, "Computational Organic Chemistry", John Wiley & Sons, Inc. (2007)
- F. Jensen, 'Introduction to Computational Chemistry', (2nd Edition, John Wiley & Sons Ltd, 2007)
- Pratt G. W., “Unrestricted Hartree-Fock Methodâ€, Phys. Rev. Vol. 102, issue 5, pp 1303-1307(1956)
- R. K.Nesbet, “Magnetic Hyperfine Structure of the Ground State of Lithiumâ€,Phys. Rev., 118, pp681-683(1960)
- A. J. Freeman, and R. E. Watson, “Contribution of the Fermi Contact Term to the Magnetic Field at the Nucleus in Ferromagnetsâ€, Phys. Rev. Letters, 5, 498 (1960)
- F. Annane, H. Meradji, F. El Haj Hassan, Computational Material Science, 50 (2010), 274-278
- M. Briki, M. Abdelouhaba, A. Zaoui, M. Ferhat, Supperlatt. Microstruct. 45 (2009) 80
- K. H. Hellwege, O. Madelung (Eds), semiconductor, intrinsic properties of group IV elements and III-V and I-VII compounds, Landolt-Bornstien New series, Group III, Vol. 22, Pt Springer, Berline 1982
- C. Weisbuch, and B. Vinter, “Quantum semiconductor structure: Fundamentls and applicationsâ€, Academic press San Diego (1991)
- Flude P., “Solids with weak and strong electron correlations (Max-Planck- institute fur physic komplexer systeme, 2008)
- Komsa H. and Pasquarello A., J. Appl. Phys. Lett. 97, (2010)
- M. P. Thompson, G. W. Auner, T. S. Zheleva, K. A. Jones, S. J. Simko, J. N. Hilfiker, J. Appl. Phys. 89 (2001) 3321
- Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shapeâ€, Phys. Rev. B 38, 9797–9805 (1988)
Cite this Article:
International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.