Raman Broad Scans of Rare Earth Oxide (REO) Glasses from RRUFF Database, Compared to the Raman spectra of RE Oxides from Raman Open Database

Raman Broad Scans of Rare Earth Oxide (REO) Glasses from RRUFF Database, Compared to the Raman spectra of RE Oxides from Raman Open Database

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2780 13 39 52-64 Volume 13 - Jul 2024

Abstract

RRUFF database is proposing the Raman broad scans of glasses CaO-Al2O3-SiO2 with rare earth element (REE) oxides, that is of CaO-RE2O3-Al2O3-SiO2 glasses. Raman data are courtesy of E. Cairns, University of Edinburgh. Here we show how we can use the q-BWF functions to decompose these spectra. The q-BWF functions are generalizing the Breit-Wigner-Fano line shape in the framework of the q-exponential function proposed by Constantino Tsallis and his statistics. Besides asymmetry, the decompositions with q-BWF line shapes are stressing Gaussian and non-Gaussian behaviors of components. The data analysis of CaO-RE2O3-Al2O3-SiO2 glasses is highlighting the presence of photoluminescence regular patterns in the Raman broad scans. In another database, the Raman Open Database (ROD), we can find some spectra of rare-earth oxides. Therefore, it is possible to compare the available REO spectra with those of CaO-RE2O3-Al2O3-SiO2 glasses and study the broadening of the Raman bands.

Keywords

Raman Spectroscopy, Photoluminescence, Broad Scan Spectrum, Broadening of Lines, Spectrum Decomposition, q-Gaussian Tsallis Lines, Breit-Wigner-Fano Line Shape, q-BWF Line Shape

References

  1. Bianconi, A. (2003). Ugo Fano and shape resonances. In AIP Conference Proceedings (Vol. 652, No. 1, pp. 13-18). American Institute of Physics.
  2. Biggar, G. M., & O'hara, M. J. (1969). A comparison of gel and glass starting materials for phase equilibrium studies. Mineralogical Magazine, 37(286), 198-205.
  3. Cairns, E., Choi, P. C., Fearnhead, K., Hadden, P., Hill, P., Malik, S., Saunders, M., Steele, D. & Tomlinson, E. (2007). Rare earth element (REE) standards. School of GeoSciences, The University of Edinburgh (http://www.geos.ed.ac.uk/facilities/EMMAC/electron/REEStandards/) 1-20. Available https://rruff.info/uploads/REE%20Standards1.pdf
  4. Caldiño, U., Bettinelli, M., Ferrari, M., Pasquini, E., Pelli, S., Speghini, A., & Righini, G. C. (2014). Rare earth doped glasses for displays and light generation. Advances in Science and Technology, 90, 174-178.
  5. Devi, S. (2021). Asymmetric Tsallis distributions for modeling financial market dynamics. Physica A: Statistical Mechanics and Its Applications, 578, 126109
  6. El Mendili, Y. (2017). Raman spectrum of commercial Eu2O3. Personal communication to ROD, https://solsa.crystallography.net/rod/3500047.html
  7. El Mendili, Y. (2017). Raman spectrum of commercial holmium(III) oxide. Personal communication to ROD, https://solsa.crystallography.net/rod/3500009.html
  8. El Mendili, Y. (2017). Raman spectrum of commercial erbium(III) oxide, Personal communication to ROD, https://solsa.crystallography.net/rod/3500007.rod
  9. El Mendili, Y. (2017). Raman spectrum of commercial Nd2O3, Personal communication to ROD, 2017, https://solsa.crystallography.net/rod/3500066.rod
  10. El Mendili, Y. (2017). Raman spectrum of commercial Samarium (III) oxide. Personal communication to ROD, 2017, https://solsa.crystallography.net/rod/3500097.rod
  11. El Mendili, Y., Vaitkus, A., Merkys, A., Gražulis, S., Chateigner, D., Mathevet, F., Gascoin, S., Petit, S., Bardeau, J.F., Zanatta, M., & Secchi, M. (2019). Raman Open Database: first interconnected Raman–X-ray diffraction open-access resource for material identification. Journal of applied crystallography, 52(3), pp.618-625.
  12. Fang, J., Sun, L., Guo, S., Liu, C., & Zhang, J. (2021). Study of Li2O addition on crystallization behavior and thermal expansion properties of CaO-Al2O3–SiO2 (CAS) glass-ceramic and its application for joining SiC ceramic. Journal of the European Ceramic Society, 41(3), 1817-1827.
  13. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 61: 14095–14107.
  14. Geissinger, P., Giering, T., Richter, W., & Haarer, D. (2000). Doped Rare Gas Solids as Model Systems for Chromophore− Matrix Interactions. Accounts of Chemical Research, 33(3), 131-138.
  15. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  16. Kumar, A., Rai, D. K., & Rai, S. B. (2002). Optical studies of Eu3+ ions doped in tellurite glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(10), 2115-2125.
  17. Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015). 1. The power of databases: The RRUFF project. In Highlights in mineralogical crystallography (pp. 1-30). De Gruyter (O).
  18. Locardi, B., & Guadagnino, E. (1992). Rare earths in glass technology. Materials chemistry and physics, 31(1-2), 45-49.
  19. Malba, C.M., Enrichi, F., Facchin, M., Demitri, N., Plaisier, J.R., Natile, M.M., Selva, M., Riello, P., Perosa, A., & Benedetti, A. (2015). Phosphonium-based tetrakis dibenzoylmethane Eu (III) and Sm (III) complexes: synthesis, crystal structure and photoluminescence properties in a weakly coordinating phosphonium ionic liquid. RSC Advances, 5(75), pp.60898-60907.
  20. Meltzer, R. S. (2005). Line broadening mechanisms and their measurement. In Spectroscopic properties of rare earths in optical materials (pp. 191-265). Berlin, Heidelberg: Springer Berlin Heidelberg.
  21. Miniscalco, W. J. (2001). Optical and electronic properties of rare earth ions in glasses. Optical Engineering, Marcel Dekker Incorporated, 71, 17-112.
  22. Miroshnichenko, A. E., Flach, S., & Kivshar, Y. S. (2010). Fano resonances in nanoscale structures. Reviews of Modern Physics, 82(3), 2257.
  23. Mo-Sci. (2023, June 02). Using Rare Earth Oxides to Make Fluorescent Glasses. AZoM. Retrieved on July 15, 2024 from https://www.azom.com/article.aspx?ArticleID=18870.
  24. Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
  25. Roth, R. S., & Schneider, S. J. (1960). Phase equilibria in systems involving the rare-earth oxides. Part I. Polymorphism of the oxides of the trivalent rare-earth ions. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 64(4), 309.
  26. Sadagov, A. Y., Goidina, T. A., Aseev, V. A., Nikonorov, N. V., Fedorov, Y. K., Chugunova, M. M., & Levin, A. D. (2020). Spectral standards based on glasses activated with rare-earth element ions for the calibration of fluorescence and Raman spectrometers. Optics and spectroscopy, 128, 1658-1666.
  27. Shelby, J. E. (1985). Formation and properties of calcium aluminosilicate glasses. Journal of the American Ceramic Society, 68(3), 155-158.
  28. Sidebottom, D. L., Hruschka, M. A., Potter, B. G., & Brow, R. K. (1997). Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses. Journal of non-crystalline solids, 222, 282-289.
  29. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. Int. J. Sciences, 12(3), 27-40, 2023, http://dx.doi.org/10.18483/ijSci.2671 Available at SSRN: https://ssrn.com/abstract=4398623
  30. Sparavigna, A. C. (2023). Asymmetric q-Gaussian functions generalizing the Breit-Wigner-Fano functions. Zenodo. https://doi.org/10.5281/zenodo.8356165
  31. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. International Journal of Sciences, 12(09), 14-24.
  32. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4445044
  33. Sparavigna A. C. (2023). Tsallis q-Gaussian function as fitting lineshape for Graphite Raman bands. ChemRxiv. Cambridge: Cambridge Open Engage; 2023.
  34. Sparavigna, A. C. (2024). Kubo Lineshape and its Fitted q-Gaussian Tsallis Function. International Journal of Sciences, 13(01), 1-9.
  35. Sparavigna, A. C. (2024). The Fitted q-Gaussian Function, from Voigt Profile to Kubo Lineshape. International Journal of Sciences, 13(03), 1-16.
  36. Sparavigna, A. C. (2024). Applying q-Gaussians to the OH-stretching Raman bands of Water and Ice. International Journal of Sciences, 13(04), 1-10.
  37. Sparavigna, A. C. (2024). Molybdenum Disulfide MoS2 and the q-BWF line shapes (Raman Spectroscopy). ChemRxiv. doi:10.26434/chemrxiv-2024-cprs3-v3 This content is a preprint and has not been peer-reviewed.
  38. Tokmakoff, A. (2014). Time-Dependent Quantum Mechanics and Spectroscopy. University of Chicago. 2014. Available online: https://tdqms.uchicago.edu/#notes
  39. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  40. Tuschel, D. (2016). Photoluminescence Spectroscopy Using a Raman Spectrometer. Spectroscopy, 31 (9),14–21
  41. Umarov, S., Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
  42. Wakefield, G., Holland, E., Dobson, P. J., & Hutchison, J. L. (2001). Luminescence properties of nanocrystalline Y2O3: Eu. Advanced Materials, 13(20), 1557-1560.
  43. Wang, M., Xiong, Q., Wang, M., Lewis, N.H., Ying, D., Yan, G., Hoenig, E., Han, Y., Lee, O.S., Peng, G., & Zhou, H. (2024). Lanthanide transport in angstrom-scale MoS2-based two-dimensional channels. Science Advances, 10(11), p.eadh1330.
  44. Wojdyr, M. (2010). Fityk: a general-purpose peak fitting program. Journal of applied crystallography, 43(5), 1126-1128.
  45. Xin, R. F., & Guo, X. M. (2022). A Study of the Crystallization Properties of CaO-SiO2-Al2O3 Glass Phase in Sinter. Metals, 12(6), 915.
  46. Yu, J., Cui, L., He, H., Yan, S., Hu, Y., & Wu, H. (2014). Raman spectra of RE2O3 (RE= Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis. Journal of rare earths, 32(1), 1-4.
  47. Zhang, H., & Zhang, H. (2022). Rare earth luminescent materials. Light: Science & Applications, 11(1), 260.
  48. Zhao, Z., Shi, J., Sun, Z., Lin, J., Huang, W., & Wang, Z. (2004). Nonlinear optical properties of Eu2O3 doped 5ZnO-20Nb2O5-75TeO2 glasses. Chinese Science Bulletin, 49, 2446-2448.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper