Graphene, Graphene Oxide and Carbon Nanotubes in Raman Spectroscopy

Graphene, Graphene Oxide and Carbon Nanotubes in Raman Spectroscopy

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2773 4 9 1-26 Volume 13 - Jul 2024

Abstract

In previous discussions we have considered the Raman spectra of specific carbon-based materials, such as diamond, graphite, and the biochar resulting from pyrolysis of biomass. We have shown how spectra can be decomposed, according to the intended number of components and the proper line shapes. Here, we approach the Raman spectra of graphene and graphene oxide, to understand how many components are required to interpret the related fingerprints. Besides graphene and graphene oxides, here we also review some literature about the Raman spectroscopy of carbon nanotubes, focusing especially on the line shapes. As shown by literature, the Raman spectra are able of giving information on the nature of nanotubes (metallic or semiconducting) and if they are single- or multi-walled structures. We will find that the Raman spectroscopy is able of investigating even a single nanotube. It will be stressed the role of curvature in breaking the symmetry of carbon layers, to produce the observed Raman bands. In particular, the existence of Breit-Wigner-Fano lines will be investigated.

Keywords

Raman Spectroscopy, Spectrum Decomposition, q-Gaussian Tsallis Lines, Graphene, Graphene Oxide, Carbo Nanotubes, Carbon-based Materials

References

  1. Athalin, H., & Lefrant, S. (2005). A correlated method for quantifying mixed and dispersed carbon nanotubes: analysis of the Raman band intensities and evidence of wavenumber shift. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 36(5), 400-408.
  2. Antunes, E. F., Lobo, A. O., Corat, E. J., & Trava-Airoldi, V. J. (2007). Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon, 45(5), 913-921.
  3. Basko, D. M., Piscanec, S., & Ferrari, A. C. (2009). Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Physical Review B, 80(16), 165413.
  4. Beyssac, O., Goffé, B., Chopin, C., & Rouzaud, J. N. (2002). Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of metamorphic Geology, 20(9), 859-871.
  5. Bokobza, L., Bruneel, J. L., & Couzi, M. (2015). Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C, 1(1), 77-94.
  6. Brodie, B. C. (1860). Sur le poids atomique du graphite. Ann. Chim. Phys, 59(466), e472.
  7. Brown, S. D. M., Jorio, A., Corio, A. P., Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Kneipp, K. (2001). Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Physical Review B, 63(15), 155414.
  8. Campbell, I. H., & Fauchet, P. M. (1986). The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communications, 58(10), 739-741.
  9. Cançado, L.G., Pimenta, M.A., Saito, R., Jorio, A., Ladeira, L.O., Grueneis, A., Souza-Filho, A.G., Dresselhaus, G., & Dresselhaus, M.S. (2002). Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Physical Review B, 66(3), p.035415.
  10. Childres, I., Jauregui, L. A., Park, W., Cao, H., & Chen, Y. P. (2013). Raman spectroscopy of graphene and related materials. New developments in photon and materials research, 1, 1-20.
  11. Claramunt, S., Varea, A., Lopez-Diaz, D., Velázquez, M. M., Cornet, A., & Cirera, A. (2015). The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. The Journal of Physical Chemistry C, 119(18), 10123- 10129.
  12. Cui, L., & Sun, M. (2021). Graphene plasmon-enhanced polarization-dependent interfacial charge transfer excitons in 2D graphene-black phosphorus heterostructures in NIR and MIR regions. The Journal of Physical Chemistry C, 125(40), 22370-22378.
  13. Devi, S. (2021). Asymmetric Tsallis distributions for modeling financial market dynamics. Physica A: Statistical Mechanics and Its Applications, 578, 126109
  14. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152), pp.457-460.
  15. Di Tinno, A., Cancelliere, R., Mantegazza, P., Cataldo, A., Paddubskaya, A., Ferrigno, L., Kuzhir, P., Maksimenko, S., Shuba, M., Maffucci, A., & Bellucci, S. (2022). Sensitive detection of industrial pollutants using modified electrochemical platforms. Nanomaterials, 12(10), p.1779.
  16. Dresselhaus, M. S., & Eklund, P. C. (2000). Phonons in carbon nanotubes. Advances in physics, 49(6), 705-814.
  17. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G., & Saito, R. (2002). Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40(12), 2043-2061.
  18. Dresselhaus, M. S., & Dresselhaus, G. (1981). Intercalation compounds of graphite. Advances in Physics, 30(2), 139-326.
  19. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., AG Filho, S., Samsonidze, G. G., & Saito, R. (2003). Science and applications of single-nanotube Raman spectroscopy. Journal of nanoscience and nanotechnology, 3(1-2), 19-37.
  20. Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics reports, 409(2), 47-99.
  21. Dubay, O., Kresse, G., & Kuzmany, H. (2002). Phonon softening in metallic nanotubes by a Peierls-like mechanism. Physical review letters, 88(23), 235506.
  22. Ejehi, F., Mohammadpour, R., Asadian, E., Sasanpour, P., Fardindoost, S., & Akhavan, O. (2020). Graphene oxide papers in nanogenerators for self-powered humidity sensing by finger tapping. Scientific reports, 10(1), 7312.
  23. Enoki, T., Suzuki, M., & Endo, M. (2003). Graphite intercalation compounds and applications. Oxford University Press.
  24. Fenske, M. R., Braun, W. G., Wiegand, R. V., Quiggle, D., McCormick, R., & Rank, D. H. (1947). Raman spectra of hydrocarbons. Analytical Chemistry, 19(10), 700-765.
  25. Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid state communications, 143(1-2), 47-57.
  26. Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 8(4), 235-246.
  27. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters 97: 187401.
  28. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 61: 14095–14107.
  29. Frisenda, R., Niu, Y., Gant, P., Muñoz, M., & Castellanos-Gomez, A. (2020). Naturally occurring van der Waals materials. npj 2D Materials and Applications, 4(1), 38.
  30. Gavilan, L., Ricketts, C. L., Bejaoui, S., Ricca, A., Boersma, C., Salama, F., & Mattioda, A. L. (2022). Raman spectroscopic study of pyrene in cosmic dust analogues: evolution from the gas to the solid phase. ACS Earth and Space Chemistry, 6(9), 2215-2225.
  31. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
  32. Goldie, S. J., Bush, S., Cumming, J. A., & Coleman, K. S. (2020). A statistical approach to Raman analysis of graphene-related materials: implications for quality control. ACS Applied Nano Materials, 3(11), 11229-11239.
  33. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., & Eklund, P. C. (2006). Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano letters, 6(12), 2667-2673.
  34. Haidari, M. M., Kim, H., Kim, J. H., Park, M., Lee, H., & Choi, J. S. (2020). Doping effect in graphene-graphene oxide interlayer. Scientific Reports, 10(1), 8258.
  35. Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
  36. Hasdeo, E. H., Nugraha, A. R., Dresselhaus, M. S., & Saito, R. (2014). Breit-Wigner-Fano line shapes in Raman spectra of graphene. Physical Review B, 90(24), 245140.
  37. Heid, R. (2017). Electron-Phonon Coupling. In The Physics of Correlated Insulators, Metals, and Superconductors. Vol.7. Pavarini, E., Koch, E., Scalettar, R. and Martin, R. (eds.). Verlag des Forschungszentrum Jülich, 2017, ISBN 978-3-95806-224-5 Open access. Available https://www.cond-mat.de/events/correl17/manuscripts/
  38. Heise, H. M., Kuckuk, R., Ojha, A. K., Srivastava, A., Srivastava, V., & Asthana, B. P. (2009). Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single‐and multi‐walled nanotubes, graphitised porous carbon and graphite. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40(3), 344-353.
  39. Hummers, W., & Offeman, R. (1958). Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339.
  40. Jiang, C., Kempa, K., Zhao, J., Schlecht, U., Kolb, U., Basché, T., Burghard, M., & Mews, A. (2002). Strong enhancement of the Breit-Wigner-Fano Raman line in carbon nanotube bundles caused by plasmon band formation. Physical Review B, 66(16), p.161404.
  41. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, D.M., McClure, T., Dresselhaus, G., & Dresselhaus, M.S. (2001). Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Physical review letters, 86(6), p.1118.
  42. Jorio, A., Pimenta, M. A., Souza Filho, A. G., Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (2003). Characterizing carbon nanotube samples with resonance Raman scattering. New Journal of Physics, 5(1), 139.
  43. Jorio, A., Dresselhaus, M., Saito, R., & Dresselhaus, G. F. (2011). Raman Spectroscopy in Graphene Related Systems; WILEY-VCH Verlag GmbH& Co. KGaA: Weinheim, Germany
  44. Jorio, A., & Saito, R. (2021). Raman spectroscopy for carbon nanotube applications. Journal of Applied Physics, 129(2).
  45. Kang, D., Kato, K., Kojima, K., Uchida, T., & Tachibana, M. (2008). Phonon control in metallic carbon nanotubes due to laser-induced defects. Applied Physics Letters, 93(13).
  46. Kempa, K. (2002). Gapless plasmons in carbon nanotubes and their interactions with phonons. Physical Review B, 66(19), 195406.
  47. King, A. A. K., Davies, B. R., Noorbehesht, N., Newman, P., Church, T.L., Harris, A. T., Razal, J. M., & Minett, A. I. (2016). A new Raman metric for the characterisation of graphene oxide and its derivatives. Scientific Reports 6(1),1–6, http://dx.doi.org/10.1038/srep19491.
  48. Knight, D. S., & White, W. B. (1989). Characterization of diamond films by Raman spectroscopy. Journal of Materials Research, 4, 385-393.
  49. Krishnan, R. S. (1945). Raman spectrum of diamond. Nature, 155(3928), 171-171.
  50. Krupke, R., Hennrich, F., Lohneysen, H. V., & Kappes, M. M. (2003). Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 301(5631), 344-347.
  51. Kürti, J., Zólyomi, V., Grüneis, A., & Kuzmany, H. (2002). Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes. Physical Review B, 65(16), 165433.
  52. Kuzmenko, A.B., Benfatto, L., Cappelluti, E., Crassee, I., Van Der Marel, D., Blake, P., Novoselov, K.S., & Geim, A.K. (2009). Gate tunable infrared phonon anomalies in bilayer graphene. Physical review letters, 103(11), p.116804.
  53. Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C., & Robertson, J. (2006). Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Physical review B, 73(15), 155426.
  54. Lerf, A., He, H., Forster, M., & Klinowski, J. (1998). Structure of Graphite Oxide Revisited. J. Phys. Chem. B,102, 4477−4482
  55. Li, Z., Deng, L., Kinloch, I. A., & Young, R. J. (2023). Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Progress in Materials Science, 135, 101089.
  56. Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier.
  57. Liu, Y. H., Ma, Z. K., He, Y., Wang, Y., Zhang, X. W., Song, H. H., & Li, C. X. (2023). A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle-and rods-like polyhedral crystals. New Carbon Materials, 38(1), 18-35.
  58. Lucchese, M.M., Stavale, F., Ferreira, E.M., Vilani, C., Moutinho, M.V.D.O., Capaz, R.B., Achete, C.A., & Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48(5), pp.1592-1597.
  59. Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics reports, 473(5-6), 51-87.
  60. Mapelli, C. (1998). Tesi di Laurea, Politecnico di Milano.
  61. Mapelli, C., Castiglioni, C., Zerbi, G., & Müllen, K. (1999). Common force field for graphite and polycyclic aromatic hydrocarbons. Physical Review B, 60(18), 12710.
  62. Maultzsch, J. (2004). Vibrational properties of carbon nanotubes and graphite, Ph.D. thesis, Technische Universität Berlin, Berlin.
  63. Merlen, A., Buijnsters, J. G., & Pardanaud, C. (2017). A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons. Coatings, 7(10), 153.
  64. Milani, A., Tommasini, M., Russo, V., Bassi, A. L., Lucotti, A., Cataldo, F., & Casari, C. S. (2015). Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires. Beilstein journal of nanotechnology, 6(1), 480-491.
  65. Miroshnichenko, A. E., Flach, S., & Kivshar, Y. S. (2010). Fano resonances in nanoscale structures. Reviews of Modern Physics, 82(3), 2257.
  66. Mishra A.K., & Ramaprabhu, S. (201). Hybrid carbon nanostructure assemblage for high performance pseudo-capacitors. AIP Adv. 2, http://dx.doi.org/10.1063/1.4717490.
  67. Mu, X., & Sun, M. (2020). The linear and non-linear optical absorption and asymmetrical electromagnetic interaction in chiral twisted bilayer graphene with hybrid edges. Materials Today Physics, 14, 100222. 10.1016/j.mtphys.2020.100222.
  68. Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
  69. Nemanich, R. J., Solin, S. A., & Martin, R. M. (1981). Light scattering study of boron nitride microcrystals. Physical Review B, 23(12), 6348.
  70. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., & Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), pp.666-669.
  71. O’Brien, C. (2023). Graphene Market & 2D Materials Assessment 2024-2034: Technologies, Markets, Players. IDTechEx ISBN 9781915514967
  72. Osswald, S., Havel, M., & Gogotsi, Y. (2007). Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 38(6), 728-736.
  73. Ott, A. K., & Ferrari, A. C. (2024). Raman spectroscopy of graphene and related materials. Encyclopedia of Condensed Matter Physics, 2nd ed.; Chakraborty, T., Ed, 233-247.
  74. Paillet, M., Poncharal, P., Zahab, A., Sauvajol, J. L., Meyer, J. C., & Roth, S. (2005). Vanishing of the Breit-Wigner-Fano component in individual single-wall carbon nanotubes. Physical review letters, 94(23), 237401.
  75. Pimenta, M.A., Marucci, A., Empedocles, S.A., Bawendi, M.G., Hanlon, E.B., Rao, A.M., Eklund, P.C., Smalley, R.E., Dresselhaus, G., & Dresselhaus, M.S. (1998). Raman modes of metallic carbon nanotubes. Physical Review B, 58(24), p.R16016.
  76. Pudikov, D. (2017). Experimental data and supporting information for "Graphene fabrication via carbon segregation through transition metal films", Mendeley Data, V1, doi: 10.17632/rmtbjz5xjp.1
  77. Pudikov, D. A., Zhizhin, E. V., Rybkin, A. G., & Shikin, A. M. (2018). Graphene fabrication via carbon segregation through transition metal films. Thin Solid Films, 648, 120-127.
  78. Rao, A. M., Jorio, A., Pimenta, M. A., Dantas, M. S. S., Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (2000). Polarized Raman study of aligned multiwalled carbon nanotubes. Physical review letters, 84(8), 1820.
  79. Rautian, S. G. (1958). Real spectral apparatus. Soviet Physics Uspekhi, 1(2), 245
  80. Richter, H., Wang, Z. P., & Ley, L. (1981). The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 39(5), 625-629.
  81. Reich, S., Thomsen, C., Duesberg, G. S., & Roth, S. (2001). Intensities of the Raman-active modes in single and multiwall nanotubes. Physical Review B, 63(4), 041401.
  82. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742.
  83. Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., & Dresselhaus, M. S. (2011). Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 60(3), 413-550.
  84. Sardinha, A. (2019). Raman spectra of Graphene oxide, Mendeley Data, V1, doi: 10.17632/n4nts7hvvx.1
  85. Sardinha, A. (2019), Raman spectra of Graphene oxide, Mendeley Data, V2, doi: 10.17632/n4nts7hvvx.2
  86. Sardinha, A. F., Almeida, D. A., & Ferreira, N. G. (2020). Electrochemical impedance spectroscopy correlation among graphene oxide/carbon fibers (GO/CF) composites and GO structural parameters produced at different oxidation degrees. Journal of Materials Research and Technology, 9(5), 10841-10853.
  87. Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A., & Aksay, I.A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. The journal of physical chemistry B, 110(17), pp.8535-8539.
  88. Seshadri, K., & Jones, R. N. (1963). The shapes and intensities of infrared absorption bands—A review. Spectrochimica Acta, 19(6), 1013-1085
  89. Shuker, R., & Gammon, R. W. (1970). Raman-scattering selection-rule breaking and the density of states in amorphous materials. Physical Review Letters, 25(4), 222.
  90. Siklitskaya, A., Gacka, E., Larowska, D., Mazurkiewicz-Pawlicka, M., Malolepszy, A., Stobiński, L., Marciniak, B., Lewandowska-Andrałojć, A., & Kubas, A. (2021). Lerf–Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins. Scientific reports, 11(1), p.7977.
  91. Sousa, D. V. D., Guimarães, L. M., Felix, J. F., Ker, J. C., Schaefer, C. E. R., & Rodet, M. J. (2020). Dynamic of the structural alteration of biochar in ancient Anthrosol over a long timescale by Raman spectroscopy. PloS one, 15(3), e0229447.
  92. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes and Raman Spectral Bands. Int. J. Sciences, 12(3), 27-40, 2023, http://dx.doi.org/10.18483/ijSci.2671
  93. Sparavigna, A. C. (2023). q-Gaussian Tsallis Line Shapes for Raman Spectroscopy (June 7, 2023). SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4445044
  94. Sparavigna, A. C. (2023). SERS Spectral Bands of L-Cysteine, Cysteamine and Homocysteine Fitted by Tsallis q-Gaussian Functions. International Journal of Sciences, 12(09), 14–24. https://doi.org/10.18483/ijsci.2721
  95. Sparavigna, A. C. (2024). Raman Spectroscopy of Siderite with q-Gaussian and split-q-Gaussian Analyses. International Journal of Sciences, 13(02), 8-21.
  96. Sparavigna, A. C. (2024). Pyrene and Biochar (Raman Spectroscopy). ChemRxiv. doi:10.26434/chemrxiv-2024-7zbtf
  97. Sparavigna, A. C. (2024). Molybdenum Disulfide MoS2 and the q-BWF line shapes (Raman Spectroscopy). ChemRxiv. doi:10.26434/chemrxiv-2024-cprs3-v3
  98. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), pp.1558-1565.
  99. Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., & Ruoff, R.S. (2006). Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16(2), pp.155-158.
  100. Stankovich, S., Piner, R.D., Nguyen, S.T., & Ruoff, R.S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44(15):3342–7.
  101. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. , & Ruoff, R.S. (2006). Graphene-based composite materials. nature, 442(7100), pp.282-286.
  102. Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487.
  103. Staudenmaier, L. (1899). Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft, 32(2), 1394-1399.
  104. Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., & Smalley, R.E. (2003). Electronic structure control of single-walled carbon nanotube functionalization. Science, 301(5639), pp.1519-1522.
  105. Tachibana, M. (2013). Characterization of laser-induced defects and modification in carbon nanotubes by Raman spectroscopy. Physical and chemical properties of carbon nanotubes, 31-52, Satoru Suzuki Editor. https://www.intechopen.com/chapters/38953
  106. Tan, P., Hu, C., Dong, J., Shen, W., & Zhang, B. (2001). Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Physical Review B, 64(21), 214301.
  107. Tang, T.T., Zhang, Y., Park, C.H., Geng, B., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Louie, S.G., & Shen, Y.R. (2010). A tunable phonon–exciton Fano system in bilayer graphene. Nature nanotechnology, 5(1), pp.32-36.
  108. Telg, H., Maultzsch, J., Reich, S., & Thomsen, C. (2005). Chirality dependence of the high‐energy Raman modes in carbon nanotubes. In AIP Conference Proceedings (Vol. 786, No. 1, pp. 162-165). American Institute of Physics.
  109. Telg, H., Fouquet, M., Maultzsch, J., Wu, Y., Chandra, B., Hone, J., Heinz, T.F., & Thomsen, C. (2008). G– and G+ in the Raman spectrum of isolated nanotube: a study on resonance conditions and lineshape. physica status solidi (b), 245(10), pp.2189-2192.
  110. Thomsen, C., & Reich, S. (2000) Double resonant Raman scattering in graphite. Physical Review Letters 85: 5214–5217.
  111. Thomsen, C., & Reich, S. (2007). Raman scattering in carbon nanotubes. Light Scattering in Solid IX, 115-234.
  112. Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
  113. Tuinstra, F., & Koenig, J. L. (1970) Raman spectrum of graphite. The Journal of Chemical Physics 53, 1126–1130.
  114. Uchida, T., Tachibana, M., Kurita, S., & Kojima, K. (2004). Temperature dependence of the Breit–Wigner–Fano Raman line in single-wall carbon nanotube bundles. Chemical physics letters, 400(4-6), 341-346.
  115. Ukhtary, M. S., & Saito, R. (2020). Surface plasmons in graphene and carbon nanotubes. Carbon, 167, 455-474.
  116. Umarov, S., Tsallis, C., & Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
  117. Wojdyr, M. (2010). Fityk: a general‐purpose peak fitting program. Journal of Applied Crystallography, 43(5‐1), 1126-1128.
  118. Wu, J. B., Lin, M. L., Cong, X., Liu, H. N., & Tan, P. H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47(5), 1822-1873.
  119. Yogi, P., Saxena, S.K., Mishra, S., Rai, H.M., Late, R., Kumar, V., Joshi, B., Sagdeo, P.R., & Kumar, R. (2016). Interplay between phonon confinement and Fano effect on Raman line shape for semiconductor nanostructures: analytical study. Solid State Communications, 230, pp.25-29.
  120. Yoon, D., Jeong, D., Lee, H. J., Saito, R., Son, Y. W., Lee, H. C., & Cheong, H. (2013). Fano resonance in Raman scattering of graphene. Carbon, 61, 373-378.
  121. Zhang, C. C., Hartlaub, S., Petrovic, I., & Yilmaz, B. (2022). Raman spectroscopy characterization of amorphous coke generated in industrial processes. ACS omega, 7(3), 2565-2570.
  122. Zhao, X., Ando, Y., Qin, L. C., Kataura, H., Maniwa, Y., & Saito, R. (2002). Multiple splitting of G-band modes from individual multiwalled carbon nanotubes. Applied physics letters, 81(14), 2550-2552.
  123. Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., Mclean, R.S., Onoa, G.B., & Samsonidze, G.G. (2003). Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science, 302(5650), pp.1545-1548.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper