Role of Lyotropic Liquid Crystals in Templating Mesosilica Materials

Role of Lyotropic Liquid Crystals in Templating Mesosilica Materials

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2691 21 53 7-40 Volume 12 - Jul 2023

Abstract

Here we consider the lyotropic liquid crystals and their role in templating the scaffolds of mesoporous silica materials. It was in 1992 that a Mobil Research group disclosed a method to produce silica particles having a regular network of pores with hexagonal and cubic symmetries. The method was proposed as a liquid-crystal 'templating' mechanism. Since the symmetries resulting in the silica scaffolds are those observed in the mesophases of lyotropic liquid crystals, the Mobil Research group supposed the presence of mesophases directly in the templating process. Here we discuss the method as it was reported in 1992 and what is today defined as the true or direct liquid-crystal templating LCT approach. It will be stressed that, in any case, LCT is a surfactant-assisted method that can be better defined as a supramolecular templating method. The template mainly happens in the form of a modified Stöber process. In this framework, the role of the curvature of silica-surfactant interfaces will be considered, the cubic phases of lyotropic liquid crystals analyzed in depth and the related surfaces with zero mean curvature discussed in detail.

Keywords

Liquid crystals, Lyotropic liquid crystals, Mesophases, Hexagonal phase, Curvature of interface, Cubic phases, Bicontinuous cubic phases, Mesoporous Silica Materials

References

  1. Aleandri, S., & Mezzenga, R. (2020). The physics of lipidic mesophase delivery systems. Physics today, 73(7), 38-45.
  2. Alfredsson, V., & Wennerström, H. (2015). The dynamic association processes leading from a silica precursor to a mesoporous SBA-15 material. Accounts of Chemical Research, 48(7), 1891-1900.
  3. AlMahri, S., Santiago, R., Lee, D. W., Ramos, H., Alabdouli, H., Alteneiji, M., Guan, Z., Cantwell, W. & Alves, M. (2021). Evaluation of the dynamic response of triply periodic minimal surfaces subjected to high strain-rate compression. Additive Manufacturing, 46, 102220.
  4. ALOthman, Z. A. (2012). A review: fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874-2902.
  5. Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., & Hill, J. P. (2012). Nanoarchitectonics for mesoporous materials. Bulletin of the Chemical Society of Japan, 85(1), 1-32.
  6. Attard, G.S., Glyde, J.C., & Goltner, C.G. (1995). Liquid crystalline phases as templates for the synthesis of mesoporous silica. Nature, 378, 366–368.
  7. Attard, G. S., Edgar, M., & Göltner, C. G. (1998). Inorganic nanostructures from lyotropic liquid crystal phases. Acta Materialia, 46(3), 751-758.
  8. Bancroft, W. D. (1913). The theory of emulsification, V. The Journal of Physical Chemistry, 17(6), 501-519.
  9. Bagshaw, S. A., Prouzet, E., & Pinnavaia, T. J. (1995). Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 269(5228), 1242-1244.
  10. Basso, A. M., Nicola, B. P., Bernardo-Gusmao, K., & Pergher, S. B. (2020). Tunable effect of the calcination of the silanol groups of KIT-6 and SBA-15 mesoporous materials. Applied Sciences, 10(3), 970.
  11. Bearat, H. H., & Vernon, B. L. (2011). Environmentally responsive injectable materials. In Injectable biomaterials (pp. 263-297). Woodhead Publishing.
  12. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., & McCullen, S. B. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834−10843.
  13. Beck, J. S., Vartuli, J. C., Kennedy, G. J., Kresge, C. T., Roth, W. J., & Schramm, S. E. (1994). Molecular or supramolecular templating: defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves. Chemistry of Materials, 6(10), 1816-1821.
  14. Beck, J. S., Vartuli, J. C., Kennedy, G. J., Kresge, C. T., Roth, W. J., & Schramm, S. E. (1995). Molecular or supramolecular templating: defining the role of surfactant chemistry in the formation of M41S and zeolitic molecular sieves. In Studies in Surface Science and Catalysis (Vol. 98, pp. 15-16). Elsevier.
  15. Benamor, T., Vidal, L., Lebeau, B., & Marichal, C. (2012). Influence of synthesis parameters on the physico-chemical characteristics of SBA-15 type ordered mesoporous silica. Microporous and Mesoporous Materials, 153, 100-114.
  16. Boissière, C., Van Der Lee, A., El Mansouri, A., Larbot, A., & Prouzet, E. (1999). A double step synthesis of mesoporous micrometric spherical MSU-X silica particles. Chemical Communications, (20), 2047-2048.
  17. Boissière, C., Larbot, A., van der Lee, A., Kooyman, P. J., & Prouzet, E. (2000). A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway. Chemistry of materials, 12(10), 2902-2913.
  18. Bruckner, J. R., Bauhof, J., Gebhardt, J., Beurer, A. K., Traa, Y., & Giesselmann, F. (2021). Mechanisms and intermediates in the true liquid crystal templating synthesis of mesoporous silica materials. The Journal of Physical Chemistry B, 125(12), 3197-3207.
  19. Caffrey, M., & Cherezov, V. (2009). Crystallizing membrane proteins using lipidic mesophases. Nature protocols, 4(5), 706-731.
  20. Cai, Q., Luo, Z. S., Pang, W. Q., Fan, Y. W., Chen, X. H., & Cui, F. Z. (2001). Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chemistry of materials, 13(2), 258-263.
  21. Carlton, R. J., Hunter, J. T., Miller, D. S., Abbasi, R., Mushenheim, P. C., Tan, L. N., & Abbott, N. L. (2013). Chemical and biological sensing using liquid crystals. Liquid crystals reviews, 1(1), 29-51.
  22. Carn, F., Colin, A., Achard, M. F., Deleuze, H., Sellier, E., Birot, M., & Backov, R. (2004). Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. Journal of Materials Chemistry, 14(9), 1370-1376.
  23. Chandrasekhar, S. (1992). Liquid Crystals, Cambridge University Press, Cambridge and New York.
  24. Charvolin, J. (1981). Interfaces of amphiphilic molecules and lyotropic liquid crystals. In Cristalli Liquidi, Atti della Scuola Nazionale del GNCL, UNICAL 1981.
  25. Charvolin, J., & Sadoc, J. F. (1988). Films of amphiphiles: packing constraints and phase diagrams. The Journal of Physical Chemistry, 92(20), 5787-5792.
  26. Chen, Z., Greaves, T. L., Fong, C., Caruso, R. A., & Drummond, C. J. (2012). Lyotropic liquid crystalline phase behaviour in amphiphile–protic ionic liquid systems. Physical Chemistry Chemical Physics, 14(11), 3825-3836.
  27. Cherezov, V., Clogston, J., Papiz, M. Z., & Caffrey, M. (2006). Room to move: crystallizing membrane proteins in swollen lipidic mesophases. Journal of molecular biology, 357(5), 1605-1618.
  28. Chernomordik, L. V., & Kozlov, M. M. (2003). Protein-lipid interplay in fusion and fission of biological membranes. Annual review of biochemistry, 72(1), 175-207.
  29. Chien, S. C., Pérez-Sánchez, G., Gomes, J. R., Cordeiro, M. N. D., Jorge, M., Auerbach, S. M., & Monson, P. A. (2017). Molecular simulations of the synthesis of periodic mesoporous silica phases at high surfactant concentrations. The Journal of Physical Chemistry C, 121(8), 4564-4575.
  30. Chiola, V., Ritsko, J. E., & Vanderpool, C. D. (1971). Process for producing low-bulk density silica. Application No. US 3556725D A filed on 26-Feb-1969. Publication No. US 3556725 A published on 19-Jan-1971.
  31. Clerc, M., Levelut, A. M., & Sadoc, J. F. (1991). Transitions between mesophases involving cubic phases in the surfactant-water systems. Epitaxial relations and their consequences in a geometrical framework. Journal de Physique II, 1(10), 1263-1276.
  32. Collings, P. J., & Hird, M. (2017). Introduction to liquid crystals: chemistry and physics. CRC Press.
  33. Conn, C. E., Ces, O., Mulet, X., Finet, S., Winter, R., Seddon, J. M., & Templer, R. H. (2006). Dynamics of structural transformations between lamellar and inverse bicontinuous cubic lyotropic phases. Physical review letters, 96(10), 108102.
  34. Das, K., Roy, B., Satpathi, S., & Hazra, P. (2019). Impact of topology on the characteristics of water inside cubic lyotropic liquid crystalline systems. The Journal of Physical Chemistry B, 123(18), 4118-4128.
  35. Debye, P. (1949). Light scattering in soap solutions. The Journal of Physical Chemistry, 53(1), 1-8.
  36. Demus, D., & Richter, L. (1980). Textures of liquid crystals. Deutscher Verlag für Grundstoffindustrie.
  37. Depardieu, M., Nollet, M., Schmitt, V., & Backov, R. (2016). Integrative chemistry: Positioning chemical reactors within the geometric space as a tool for the design of advanced functional materials. Comptes Rendus Chimie, 19(1-2), 216-230.
  38. Dierking, I. (2003). Textures of liquid crystals. John Wiley & Sons.
  39. Di Renzo, F., Cambon, H., & Dutartre, R. (1997). A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Materials, 10(4-6), 283-286.
  40. Doane, J. W., Golemme, A., West, J. L., Whitehead Jr, J. B., & Wu, B. G. (1988). Polymer dispersed liquid crystals for display application. Molecular Crystals and Liquid Crystals, 165(1), 511-532.
  41. Eftekhari, A., & Fan, Z. (2017). Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Materials Chemistry Frontiers, 1(6), 1001-1027.
  42. Ekwall, P. (1975). Composition, properties and structures of liquid crystalline phases in systems of amphiphilic compounds. In Advances in liquid crystals (Vol. 1, pp. 1-142). Elsevier.
  43. Fang, Q. R., Makal, T. A., Young, M. D., & Zhou, H. C. (2010). Recent advances in the study of mesoporous metal-organic frameworks. Comments on Inorganic Chemistry, 31(5-6), 165-195.
  44. Galarneau, A., Nader, M., Guenneau, F., Di Renzo, F., & Gedeon, A. (2007). Understanding the stability in water of mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C, 111(23), 8268-8277.
  45. Gandy, P. J., & Klinowski, J. (2000). Exact computation of the triply periodic G (Gyroid) minimal surface. Chemical Physics Letters, 321(5-6), 363-371.
  46. Gao, C., Sakamoto, Y., Sakamoto, K., Terasaki, O., & Che, S. (2006). Synthesis and Characterization of Mesoporous Silica AMS‐10 with Bicontinuous Cubic Pn3m Symmetry. Angewandte Chemie International Edition, 45(26), 4295-4298.
  47. Gascón, V., Márquez‐Alvarez, C., Díaz, I., & Blanco, R. M. (2016). Hybrid Ordered Mesoporous Materials as Supports for Permanent Enzyme Immobilization Through Non‐covalent Interactions. Non‐covalent Interactions in the Synthesis and Design of New Compounds, 345-360.
  48. Giraldo, L. F., López, B. L., Pérez, L., Urrego, S., Sierra, L., & Mesa, M. (2007). Mesoporous silica applications. In Macromolecular symposia (Vol. 258, No. 1, pp. 129-141). Weinheim: WILEY‐VCH Verlag.
  49. Goux, A., Etienne, M., Aubert, E., Lecomte, C., Ghanbaja, J., & Walcarius, A. (2009). Oriented mesoporous silica films obtained by electro-assisted self-assembly (EASA). Chemistry of Materials, 21(4), 731-741.
  50. Gov, N., Borukhov, I., & Goldfarb, D. (2006). Morphological transitions during the formation of templated mesoporous materials: Theoretical modeling. Langmuir, 22(2), 605-614.
  51. Gòźdź, W., & Hołyst, R. (1996). From the Plateau problem to periodic minimal surfaces in lipids and diblock copolymers. Macromol. Theory Simul., 1996, 5, 321–332.
  52. Gòźdź, W., & Hołyst, R. (1996). High genus periodic gyroid surfaces of nonpositive Gaussian curvature. Physical review letters, 76(15), 2726.
  53. Góźdź, W. T., & Hołyst, R. (1996). Triply periodic surfaces and multiply continuous structures from the Landau model of microemulsions. Physical Review E, 54(5), 5012.
  54. Grün, M., Lauer, I., & Unger, K. K. (1997). The synthesis of micrometer‐and submicrometer‐size spheres of ordered mesoporous oxide MCM‐41. Advanced Materials, 9(3), 254-257.
  55. Guo, C., Wang, J., Cao, F., Lee, R. J., & Zhai, G. (2010). Lyotropic liquid crystal systems in drug delivery. Drug discovery today, 15(23-24), 1032-1040.
  56. Helfrich, W. (1973). Elastic properties of lipid bilayers—theory and possible experiments Z. Naturf., c 28, 693–703.
  57. Huang, L., Wang, H., Wang, Z., Mitra, A., Zhao, D., & Yan, Y. (2002). Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase. Chemistry of materials, 14(2), 876-880.
  58. Huang, C. H., Chang, K. P., Ou, H. D., Chiang, Y. C., & Wang, C. F. (2011). Adsorption of cationic dyes onto mesoporous silica. Microporous and Mesoporous Materials, 141(1-3), 102-109.
  59. Huang, Y., & Gui, S. (2018). Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC advances, 8(13), 6978-6987.
  60. Huo, Q., Margolese, D.I., Ciesla, U., Demuth, D.G., Feng, P., Gier, T.E., Sieger, P., Firouzi, A., & Chmelka, B.F. (1994). Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials, 6(8), pp.1176-1191.
  61. Iler, K. R. (1979). The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley.
  62. Janus, R., Natkański, P., Wądrzyk, M., Lewandowski, M., Michalik, M., & Kuśtrowski, P. (2022). Surface-Selective Deposition of Poly(Furfuryl Alcohol) in Mesoporous Silica Template: A Cornerstone of Facile and Versatile Synthesis of High-Quality Cmk-Type Carbon Replicas. Nanocasting of Sba-15, Sba-16, and Kit-6. Available at SSRN: https://ssrn.com/abstract=4033373 or http://dx.doi.org/10.2139/ssrn.4033373
  63. Jervis, H. B., Bruce, D. W., Raimondi, M. E., Seddon, J. M., Maschmeyer, T., & Raja, R. (1999). Templating mesoporous silicates on surfactant ruthenium complexes: a direct approach to heterogeneous catalysts. Chemical Communications, (20), 2031-2032.
  64. Johansson, E. M. (2010). Controlling the Pore Size and Morphology of Mesoporous Silica. Linköping Studies in Science and Technology. Licentiate Thesis No. 1451. ISBN: 978-91-7393-305-6, ISSN: 0280-7971, LiU-tryck, Linköping, Sweden, 2010
  65. Karamikamkar, S., Naguib, H. E., & Park, C. B. (2020). Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Advances in colloid and interface science, 276, 102101.
  66. Kim, T. W., Kleitz, F., Paul, B., & Ryoo, R. (2005). MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer− butanol− water system. Journal of the American Chemical Society, 127(20), 7601-7610.
  67. Kim, T. W., Chung, P. W., & Lin, V. S. Y. (2010). Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chemistry of Materials, 22(17), 5093-5104.
  68. Kim, H. J., Yang, H. C., Chung, D. Y., Yang, I. H., Choi, Y. J., & Moon, J. K. (2015). Functionalized mesoporous silica membranes for CO2 separation applications. Journal of Chemistry, Volume 2015, Article ID 202867, https://doi.org/10.1155/2015/202867
  69. Kirk, G. L., Gruner, S. M., & Stein, D. L. (1984). A thermodynamic model of the lamellar to inverse hexagonal phase-transition of lipid-membrane water-systems. Biochemistry 23, 1093–102.
  70. Kleitz, F., Choi, S. H., & Ryoo, R. (2003). Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, (17), 2136-2137.
  71. Kleitz, F., Liu, D., Anilkumar, G. M., Park, I. S., Solovyov, L. A., Shmakov, A. N., & Ryoo, R. (2003). Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure. The Journal of Physical Chemistry B, 107(51), 14296-14300.
  72. Kozlovsky, Y., Chernomordik, L. V., & Kozlov, M. M. (2002). Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophysical journal, 83(5), 2634-2651.
  73. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710−712.
  74. Lagerwall, J. P., & Scalia, G. (2012). A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio-and microtechnology. Current Applied Physics, 12(6), 1387-1412.
  75. Lagrange. J. L. (1760). Essai d'une nouvelle methode pour determiner les maxima et les minima des formules integrales indefinies. Miscellanea Taurinensia 2, 325(1), 1760.
  76. Landau, L. D., & Lifshitz, E. M. (2013). Statistical Physics: Volume 5 (Vol. 5). Elsevier.
  77. Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590-2605.
  78. Li, Y., Fu, Z. Y., & Su, B. L. (2012). Hierarchically structured porous materials for energy conversion and storage. Advanced Functional Materials, 22(22), 4634-4667.
  79. Li, W., Liu, J., & Zhao, D. (2016). Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 1(6), 1-17.
  80. Li, Y., Li, R., Hu, H., Zhang, K., & Han, P. (2020). Photonic crystal films with high reflectance based on mesoporous silica in the extreme ultraviolet range. Optics Communications, 474, 126110.
  81. Liang, J., Liang, Z., Zou, R., & Zhao, Y. (2017). Heterogeneous catalysis in zeolites, mesoporous silica, and metal–organic frameworks. Advanced Materials, 29(30), 1701139.
  82. Lidin, S. (1990). Some results of the bonnet transformation. Le Journal de Physique Colloques, 51(C7), C7-237.
  83. Linton, P., Rennie, A. R., Zackrisson, M., & Alfredsson, V. (2009). In situ observation of the genesis of mesoporous silica SBA-15: Dynamics on length scales from 1 nm to 1 μm. Langmuir, 25(8), 4685-4691.
  84. Liu, S., Lu, L., Yang, Z., Cool, P., & Vansant, E. F. (2006). Further investigations on the modified Stöber method for spherical MCM-41. Materials chemistry and physics, 97(2-3), 203-206.
  85. Lord, E. A., & Mackay, A. L. (2003). Periodic minimal surfaces of cubic symmetry. Current Science, 346-362.
  86. Lüdtke , S., Adam, T., & Unger, K. K. (1997). Application of 0.5-μm porous silanized silica beads in electrochromatography. Journal of Chromatography A, 786(2), 229-235.
  87. Luo, H., Jiang, K., Liang, X., Hua, C., Li, Y., & Liu, H. (2019). Insights into morphological transition of Pluronic P123 micelles as a function of gallate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 221-229.
  88. Luzzati, V., & Spegt, P. A. (1967). Polymorphism of lipids. Nature, 215(5102), 701-704.
  89. Luzzati, V., Tardieu, A., & Gulik-Krzywicki, T. (1968). Polymorphism of lipids. Nature, 217(5133), 1028-1030.
  90. Luzzati, V., Tardieu, A., Gulik-Krzywicki, T., Rivas, E., & Reiss-Husson, F. (1968). Structure of the cubic phases of lipid–water systems. Nature, 220(5166), 485-488.
  91. Mariani, P., Luzzati, V., & Delacroix, H. (1988). Cubic phases of lipid-containing systems: Structure analysis and biological implications. Journal of molecular biology, 204(1), 165-189.
  92. Mariani, P., Amaral, L. Q., Saturni, L., & Delacroix, H. (1994). Hexagonal-cubic phase transitions in lipid containing systems: epitaxial relationships and cylinder growth. Journal de Physique II, 4(8), 1393-1416.
  93. Martin, T., Galarneau, A., Di Renzo, F., Fajula, F., & Plee, D. (2002). Morphological control of MCM‐41 by pseudomorphic synthesis. Angewandte Chemie, 114(14), 2702-2704.
  94. Mertins, O., Mathews, P. D., & Angelova, A. (2020). Advances in the Design of Ph-Sensitive Cubosome Liquid Crystalline Nanocarriers for Drug Delivery Applications. Nanomaterials 2020, 10 (5), 963.
  95. Mezzenga, R., Seddon, J. M., Drummond, C. J., Boyd, B. J., Schröder‐Turk, G. E., & Sagalowicz, L. (2019). Nature‐Inspired Design and Application of Lipidic Lyotropic Liquid Crystals. Advanced Materials, 31(35), 1900818.
  96. Mitchell, D. J., Tiddy, G. J., Waring, L., Bostock, T., & McDonald, M. P. (1983). Phase behaviour of polyoxyethylene surfactants with water. Mesophase structures and partial miscibility (cloud points). Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 79(4), 975-1000.
  97. Miyasaka, K., Garcia Bennett, A., Han, L., Han, Y., Xiao, C., Fujita, N., Castle, T., Sakamoto, Y., Che, S., & Terasaki, O. (2012). The role of curvature in silica mesoporous crystals. Interface Focus, 2(5), 634-644.
  98. Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., & Chmelka, B. F. (1993). Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 261(5126), 1299-1303.
  99. Nagaraj, M. (2020). Liquid Crystals Templating. Crystals, 10, 648.
  100. Nakazumi, T., & Hara, Y. (2017). Influence of thickness of alkyl-silane coupling agent coating on separation of small DNA fragments in capillary gel electrophoresis. In IOP Conference Series: Materials Science and Engineering (Vol. 242, No. 1, p. 012034). IOP Publishing.
  101. Niculescu, V. C. (2020). Mesoporous silica nanoparticles for bio-applications. Frontiers in Materials, 7, 36.
  102. Neto, A. M. F., & Salinas, S. R. (2005). The physics of lyotropic liquid crystals: phase transitions and structural properties (Vol. 62). OUP Oxford.
  103. Nozieres, P., Pistolesi, F., & Balibar, S. (2001). Steps and facets at the surface of soft crystals. The European Physical Journal B-Condensed Matter and Complex Systems, 24(3), 387-394.
  104. Ojeda-López, R., Domínguez-Ortiz, A., Felipe, C., Cervantes-Uribe, A., Pérez-Hermosillo, I. J., & Esparza-Schulz, J. M. (2021). Isosteric enthalpy behavior of CO2 adsorption on micro-mesoporous materials: carbon microfibers (CMFs), SBA-15, and amine-functionalized SBA-15. Journal of Composites Science, 5(4), 102.
  105. Omer, L., Ruthstein, S., Goldfarb, D., & Talmon, Y. (2009). High-resolution cryogenic-electron microscopy reveals details of a hexagonal-to-bicontinuous cubic phase transition in mesoporous silica synthesis. Journal of the American Chemical Society, 131(34), 12466-12473.
  106. Paccamiccio, L., Pisani, M., Spinozzi, F., Ferrero, C., Finet, S., & Mariani, P. (2006). Pressure effects on lipidic direct phases: the dodecyl trimethyl ammonium chloride− water system. The Journal of Physical Chemistry B, 110(25), 12410-12418.
  107. Pérez-Sánchez, G., Gomes, J. R. B., & Jorge, M. (2013). Modeling Self-Assembly of Silica/Surfactant Mesostructures in the Templated Synthesis of Nanoporous Solids. Langmuir, 29, 2387– 2396.
  108. Pérez-Sánchez, G., Chien, S.-C., Gomes, J. R. B., Cordeiro, M. N. D. S., Auerbach, S. M., Monson, P. A., & Jorge, M. (2016). Multiscale Model for the Templated Synthesis of Mesoporous Silica: The Essential Role of Silica Oligomers. Chem. Mater., 28, 2715– 2727.
  109. Perroni, D. V., Baez-Cotto, C. M., Sorenson, G. P., & Mahanthappa, M. K. (2015). Linker length-dependent control of gemini surfactant aqueous lyotropic gyroid phase stability. The Journal of Physical Chemistry Letters, 6(6), 993-998.
  110. Pieranski, P. (2011). Faceting of Soft Crystals. In Advances in Planar Lipid Bilayers and Liposomes (Vol. 14, pp. 1-43). Academic Press.
  111. Popescu-Pampu, P. (2016). What is the Genus? Springer Verlag. ISBN 978-3-319-42312-8.
  112. Qiu, H., & Caffrey, M. (2000). The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials, 21(3), 223-234.
  113. Rançon, Y., & Charvolin, J. (1987). Displacement disorder in a liquid crystalline phase with cubic symmetry. Journal de physique, 48(6), 1067-1073.
  114. Roucher, A., Emo, M., Vibert, F., Stébé, M. J., Schmitt, V., Jonas, F., Backov R. & Blin, J. L. (2019). Investigation of mixed ionic/nonionic building blocks for the dual templating of macro-mesoporous silica. Journal of colloid and interface science, 533, 385-400.
  115. Roucher, A., Bentaleb, A., Laurichesse, E., Dourges, M. A., Emo, M., Schmitt, V., Blin, J. L. & Backov, R. (2018). First macro-mesocellular silica SBA-15-Si (HIPE) Monoliths: conditions for obtaining self-standing materials. Chemistry of Materials, 30(3), 864-873.
  116. Ruthstein, S., Frydman, V., Kababya, S., Landau, M., & Goldfarb, D. J. (2003). Study of the formation of the mesoporous material SBA-15 by EPR spectroscopy. The Journal of Physical Chemistry B, 107(8), 1739-1748.
  117. Ruthstein, S., Schmidt, J., Kesselman, E., Talmon, Y., & Goldfarb, D. J. (2006). Resolving intermediate solution structures during the formation of mesoporous SBA-15. Journal of the American Chemical Society, 128(10), 3366-3374.
  118. Sakamoto, Y., Diaz, I., Terasaki, O., Zhao, D., Perez-Pariente, J., Kim, J. M., & Stucky, G. D. (2002). Three-dimensional cubic mesoporous structures of SBA-12 and related materials by electron crystallography. The Journal of Physical Chemistry B, 106(12), 3118-3123.
  119. Sakya, P., Seddon, J. M., Templer, R. H., Mirkin, R. J., & Tiddy, G. J. T. (1997). Micellar cubic phases and their structural relationships: The nonionic surfactant system C12EO12/water. Langmuir, 13(14), 3706-3714.
  120. Sasidharan, M., & Nakashima, K. (2014). Core–shell–corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres. Accounts of chemical research, 47(1), 157-167.
  121. Schwarz, H. (1865). Über Minimalflächen. Monatsber. Berlin Akad., April 1865; Gesammelte Mathematische Abhandlungen, Springer, Berlin, 1890, vol. 1.
  122. Schoen, A. H. (1970). Infinite periodic minimal surfaces without self-intersections (No. C-98). NASA Technical Notes.
  123. Scriven, L. E. (1976). Equilibrium bicontinuous structure. Nature 263, 123–5.
  124. Severs, N. J. (2007). Freeze-fracture electron microscopy. Nature protocols, 2(3), 547-576.
  125. Sharma, M. K., & Shah, D. O. (1985). Introduction to macro-and microemulsions. Macro- and Microemulsions, Chapter 1, pp 1-18. ACS Symposium Series Vol. 272, ISBN13: 9780841208964 eISBN: 9780841211025.
  126. Shearman, G. C., Ces, O., Templer, R. H., & Seddon, J. M. (2006). Inverse lyotropic phases of lipids and membrane curvature. Journal of Physics: Condensed Matter, 18(28), S1105.
  127. Shirwaiker, R. A., Purser, M. F., & Wysk, R. A. (2014). Scaffolding hydrogels for rapid prototyping based tissue engineering. In Rapid Prototyping of Biomaterials (pp. 176-200). Woodhead Publishing.
  128. Seddon, J. M., Zeb, N., Templer, R. H., McElhaney, R. N., & Mannock, D. A. (1996). An Fd 3 m lyotropic cubic phase in a binary glycolipid/water system. Langmuir, 12(22), 5250-5253.
  129. Siegel, D. P. (1986). Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Biophysical journal, 49(6), 1171-1183.
  130. Silverstein, M. S. (2014). PolyHIPEs: Recent advances in emulsion-templated porous polymers. Progress in Polymer Science, 39(1), 199-234.
  131. Slowing, I. I., Vivero-Escoto, J. L., Trewyn, B. G., & Lin, V. S. Y. (2010). Mesoporous silica nanoparticles: structural design and applications. Journal of Materials Chemistry, 20(37), 7924-7937.
  132. Soni, S. S., Brotons, G., Bellour, M., Narayanan, T., & Gibaud, A. (2006). Quantitative SAXS analysis of the P123/water/ethanol ternary phase diagram. The journal of physical chemistry B, 110(31), 15157-15165.
  133. Sorenson, G. P., & Mahanthappa, M. K. (2015). Structure versus Function in Polycontinuous Network Phases: What's in a name? in Reply to the ‘Comment on “Discovery of a tetracontinuous, aqueous lyotropic network phase with unusual 3D-hexagonal symmetry”’by G. Schröder-Turk, M. Fischer and S. Hyde. Soft Matter, 11(6), 1228-1230.
  134. Sparavigna, A.C. (2022). Lyotropic liquid crystals as templates for mesoporous silica materials. SSRN, DOI: 10.2139/ssrn.4285677
  135. Sparavigna AC. (2022). Liquid crystal templates of mesoporous silica materials. ChemRxiv. Cambridge: Cambridge Open Engage.
  136. Sparavigna, A. C. (2023). Water in Pores: The Gibbs-Thomson Effect. SSRN, DOI: 10.2139/ssrn.4349640
  137. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 26(1), 62-69.
  138. Sun, M. H., Huang, S. Z., Chen, L. H., Li, Y., Yang, X. Y., Yuan, Z. Y., & Su, B. L. (2016). Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical society reviews, 45(12), 3479-3563.
  139. Tan, C., Hosseini, S. F., & Jafari, S. M. (2022). Cubosomes and hexosomes as novel nanocarriers for bioactive compounds. Journal of Agricultural and Food Chemistry, 70(5), 1423-1437.
  140. Teubner, M., & Strey, R. (1987). Origin of the scattering peak in microemulsions. The Journal of Chemical Physics, 87(5), 3195-3200.
  141. Thibaut, A., Misselyn-Bauduin, A. M., Broze, G., & Jérôme, R. (2000). Adsorption of poly (vinylpyrrolidone)/surfactant (s) mixtures at the silica/water interface: a calorimetric investigation. Langmuir, 16(25), 9841-9849.
  142. Tran, N., Zhai, J., Conn, C. E., Mulet, X., Waddington, L. J., & Drummond, C. J. (2018). Direct visualization of the structural transformation between the lyotropic liquid crystalline lamellar and bicontinuous cubic mesophase. The Journal of Physical Chemistry Letters, 9(12), 3397-3402.
  143. Tresset, G. (2009). The multiple faces of self-assembled lipidic systems. PMC biophysics, 2(1), 1-25.
  144. Tsitsilianis, C., Voulgaris, D., Štěpánek, M., Podhájecká, K., Procházka, K., Tuzar, Z., & Brown, W. (2000). Polystyrene/poly (2-vinylpyridine) heteroarm star copolymer micelles in aqueous media and onion type micelles stabilized by diblock copolymers. Langmuir, 16(17), 6868-6876.
  145. Vallet-Regí, M., Schüth, F., Lozano, D., Colilla, M., & Manzano, M. (2022). Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?. Chemical Society Reviews, 51, 5365-5451.
  146. Vallet-Regi, M., Rámila, A., Del Real, R. P., & Pérez-Pariente, J. (2001). A new property of MCM-41: drug delivery system. Chemistry of Materials, 13(2), 308-311.
  147. Van Der Voort, P., Morey, M., Stucky, G. D., Mathieu, M., & Vansant, E. F. (1998). Creation of VOx Surface Species on Pure Silica MCM-48 Using Gas-Phase Modification with VO(acac)2. The Journal of Physical Chemistry B, 102(3), 585-590.
  148. Vertogen, G., & De Jeu, W. H. (2012). Thermotropic liquid crystals, fundamentals (Vol. 45). Springer Science & Business Media.
  149. Vincent, B. (2014). McBain and the centenary of the micelle. Advances in colloid and interface science, 203, 51-54.
  150. Vinu, A., Miyahara, M., Sivamurugan, V., Mori, T., & Ariga, K. (2005). Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. Journal of Materials Chemistry, 15(48), 5122-5127.
  151. Vivero‐Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S. Y. (2010). Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 6(18), 1952-1967.
  152. Wan, Y., & Zhao, D. (2007). On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 107(7), 2821-2860.
  153. Wawrzyńczak, A., Jarmolińska, S., & Nowak, I. (2022). Nanostructured KIT-6 materials functionalized with sulfonic groups for catalytic purposes. Catalysis Today, 397, 526-539.
  154. Wei, T. C., & Hillhouse, H. W. (2007). Mass transport and electrode accessibility through periodic self-assembled nanoporous silica thin films. Langmuir, 23(10), 5689-5699.
  155. Winsor, P. A. (1968). Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure, and theoretical significance of liquid crystalline solutions. Chemical reviews, 68(1), 1-40.
  156. Wu, L., Li, Y., Fu, Z., & Su, B. L. (2020). Hierarchically structured porous materials: Synthesis strategies and applications in energy storage. National Science Review, 7(11), 1667-1701.
  157. Xu, R., Pang, W., Yu, J., Huo, Q., & Chen, J. (2009). Chemistry of zeolites and related porous materials: synthesis and structure. John Wiley & Sons.
  158. Xu, C., Lei, C., Wang, Y., & Yu, C. (2022). Dendritic mesoporous nanoparticles: structure, synthesis and properties. Angewandte Chemie, 134(12), e202112752.
  159. Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062.
  160. Yaghmur, A., Laggner, P., Zhang, S., & Rappolt, M. (2007). Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLoS One, 2(5), e479.
  161. Yanagisawa, T., Shimizu, T., Kuroda, K., & Kato, C. (1990). The preparation of alkyltrimethylammonium–kanemite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan, 63(4), 988-992.
  162. Yokoi, T., Yoshitake, H., & Tatsumi, T. (2003). Synthesis of anionic-surfactant-templated mesoporous silica using organoalkoxysilane-containing amino groups. Chemistry of materials, 15(24), 4536-4538.
  163. Zhang, G., Chen, X., Zhao, Y., Ma, F., Jing, B., & Qiu, H. (2008). Lyotropic liquid-crystalline phases formed by Pluronic P123 in ethylammonium nitrate. The Journal of Physical Chemistry B, 112(21), 6578-6584.
  164. Zhao, X. S., Lu, G. Q., Whittaker, A. K., Millar, G. J., & Zhu, H. Y. (1997). Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA. The Journal of Physical Chemistry B, 101(33), 6525-6531.
  165. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science, 279(5350), 548-552.
  166. Zholobenko, V. L., Khodakov, A. Y., Impéror-Clerc, M., Durand, D., & Grillo, I. (2008). Initial stages of SBA-15 synthesis: An overview. Advances in Colloid and Interface Science, 142(1-2), 67-74.
  167. Zeng, X., Poppe, S., Lehmann, A., Prehm, M., Chen, C., Liu, F., Lu, H., Ungar, G., & Tschierske, C. (2019). A Self‐Assembled Bicontinuous Cubic Phase with a Single‐Diamond Network. Angewandte Chemie, 131(22), 7453-7457.
  168. Zhu, Y., Shi, J., Shen, W., Chen, H., Dong, X., & Ruan, M. (2005). Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnology, 16(11), 2633.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper