Download Full PDF
Read Complete Article
DOI: 10.18483/ijSci.2671
~ 26
` 102
a 27-40
Volume 12 - Mar 2023
Abstract
q-Gaussians are probability distributions having their origin in the framework of Tsallis statistics. A continuous real parameter q is characterizing them so that, in the range 1 < q < 3, the q-functions pass from the usual Gaussian form, for q close to 1, to that of a heavy tailed distribution, at q close to 3. The value q=2 corresponds to the Cauchy-Lorentzian distribution. This behavior of q-Gaussian functions could be interesting for a specific application, that regarding the analysis of Raman spectra, where Lorentzian and Gaussian profiles are the line shapes most used to fit the spectral bands. Therefore, we will propose q-Gaussians with the aim of comparing the resulting fit analysis with data available in literature. As it will be clear from the discussion, this is a very sensitive issue. We will also provide a detailed discussion about Voigt and pseudo-Voigt functions and their role in the line shape modeling of Raman bands. We will show a successfully comparison of these functions with q-Gaussians. The role of q-Gaussians in EPR spectroscopy (Howarth et al., 2003), where the q-Gaussian is given as the "Tsallis lineshape function", will be reported. Two examples of fitting Raman D and G bands with q-Gaussians are proposed too.
Keywords
q-Gaussian distribution, Gaussian distribution, Cauchy distribution, Lorentzian distribution, Voigt distribution, Pseudo-Voigt function, Carbonaceous Materials, Raman spectroscopy, EPR spectroscopy, Tsallis line shape
References
- Alemany, P. A. (1997). Possible connection of the generalized thermostatistics with a scale invariant statistical thermodynamics. Physics Letters A, 235(5), 452-456.
- Anderson, P. W., & Weiss, P. R. (1953). Exchange narrowing in paramagnetic resonance. Reviews of Modern Physics, 25(1), 269.
- Anderson, P. W. (1954). A mathematical model for the narrowing of spectral lines by exchange or motion. Journal of the Physical Society of Japan, 9(3), 316-339.
- Armstrong, B. H. (1967). Spectrum line profiles: the Voigt function. Journal of Quantitative Spectroscopy and Radiative Transfer, 7(1), 61-88.
- Bartoli, M., Rosi, L., Giovannelli, A., Frediani, P., & Frediani, M. (2020). Characterization of bio-oil and bio-char produced by low-temperature microwave-assisted pyrolysis of olive pruning residue using various absorbers. Waste Management & Research, 38(2), 213-225.
- Bartoli, M., Giorcelli, M., Jagdale, P., Rovere, M., & Tagliaferro, A. (2020). A review of non-soil biochar applications. Materials, 13(2), 261.
- Bartoli, M., Giorcelli, M., & Tagliaferro, A. (Eds.). (2023). Biochar - Productive Technologies, Properties and Applications. doi: 10.5772/intechopen.100763
- Brassard, P., Godbout, S., Lévesque, V., Palacios, J. H., Raghavan, V., Ahmed, A., Hogue, R., Jeanne, T., & Verma, M. (2019). Biochar for soil amendment. In Char and carbon materials derived from biomass (pp.109-146), Elsevier, 2019.
- Burrows, A., Burgasser, A. J., Kirkpatrick, J. D., Liebert, J., Milsom, J. A., Sudarsky, D., & Hubeny, I. (2002). Theoretical spectral models of T dwarfs at short wavelengths and their comparison with data. The Astrophysical Journal, 573(1), 394.
- Burrows, A., & Volobuyev, M. (2003). Calculations of the far-wing line profiles of sodium and potassium in the atmospheres of substellar-mass objects. The Astrophysical Journal, 583(2), 985.
- Claramunt, S., Varea, A., Lopez-Diaz, D., Velázquez, M. M., Cornet, A., & Cirera, A. (2015). The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. The Journal of Physical Chemistry C, 119(18), 10123-10129.
- Das, C., Tamrakar, S., Kiziltas, A., & Xie, X. (2021). Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers, 13(16), 2663
- Demtröder, W. (1985). Laser spectroscopy: Basic concepts and instrumentation.
- De Vries, A. (1970). X-ray photographic studies of liquid crystals I. A cybotactic nematic phase. Molecular Crystals and Liquid Crystals, 10(1-2), 219-236.
- Dicke, R. H. (1953). The effect of collisions upon the Doppler width of spectral lines. Physical Review, 89(2), 472.
- Failla, M., Alamo, R. G., & Mandelkern, L. (1992). On the analysis of the Raman internal modes of crystalline polyethylene. Polymer testing, 11(2), 151-159.
- Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 61(20), 14095.
- Ferrari, A. C., & Robertson, J. (Eds.) (2004). Raman spectroscopy in carbons: From nanotubes to diamond”. Philos. Trans. R. Soc. Ser. A 362, 2267.
- Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid state communications, 143(1-2), 47-57.
- Grant, W. J. C., & Strandberg, M. W. P. (1964). Statistical theory of spin-spin interactions in solids. Physical Review, 135(3A), A715.
- Gulley, J. E., Hone, D., Scalapino, D. J., & Silbernagel, B. G. (1970). Exchange Narrowing: Magnetic Resonance Line Shapes and Spin Correlations in Paramagnetic KMn F 3, RbMn F 3, and Mn F 2. Physical Review B, 1(3), 1020.
- Han, Y., Wang, J., Dong, Y., Hou, Q., & Pan, J. (2017). The role of structure defects in the deformation of anthracite and their influence on the macromolecular structure. Fuel, 206, 1-9.
- Hanel, R., Thurner, S., & Tsallis, C. (2009). Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. The European Physical Journal B, 72(2), 263.
- Hasdeo, E. H., Nugraha, A. R., Dresselhaus, M. S., & Saito, R. (2014). Breit-Wigner-Fano line shapes in Raman spectra of graphene. Physical Review B, 90(24), 245140.
- Howarth, D. F., Weil, J. A., & Zimpel, Z. (2003). Generalization of the lineshape useful in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 161(2), 215-221.
- Ida, T., Ando, M., & Toraya, H. (2000). Extended pseudo-Voigt function for approximating the Voigt profile. Journal of Applied Crystallography, 33(6), 1311-1316.
- Jain, V., Biesinger, M. C., & Linford, M. R. (2018). The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans. Applied Surface Science, 447, 548-553.
- Johal, R. S. (1999). An interpretation of Tsallis statistics based on polydispersity. arXiv preprint cond-mat/9909389.
- Kakalios, J., Street, R. A., & Jackson, N. W. (1987). Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon. Physical review letters, 59(9), 1037.
- Keresztury, G., & Földes, E. (1990). On the Raman spectroscopic determination of phase distribution in polyethylene. Polymer testing, 9(5), 329-339.
- Kirillov, S. (2004). Novel approaches in spectroscopy of interparticle interactions. Vibrational line profiles and anomalous non-coincidence effects. In Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations; Springer: Berlin/Heidelberg, Germany, 2004; pp. 193–227
- Kirillov, S. A. (1999). Time-correlation functions from band-shape fits without Fourier transform. Chemical physics letters, 303(1-2), 37-42.
- Kirillov, S. A. (1993). Markovian frequency modulation in liquids. Analytical description and comparison with the stretched exponential approach. Chemical physics letters, 202(6), 459-463.
- Kubo, R., & Tomita, K. (1954). A general theory of magnetic resonance absorption. Journal of the Physical Society of Japan, 9(6), 888-919.
- Lahfid A., Beyssac O., Deville E., Negro F., Chopin C., & Goffe B. (2010). Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22, 354–360.
- Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., & von Eynatten, H. (2017). Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part 2: A revised geothermometer. Geostandards and Geoanalytical Research, 41(4), 593-612.
- Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., & von Eynatten, H. (2014). Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part I: evaluation of biasing factors. Geostandards and Geoanalytical Research, 38(1), 73-94.
- Lünsdorf, N. K., & Lünsdorf, J. O. (2016). Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting. International Journal of Coal Geology, 160–161, 51–62.
- Marschal, A. G., & Verdun, F. R. (1990). Fourier Transforms in NMR, Optical, and Mass Spectrometry, Elsevier, Amsterdam.
- Meier, R. J. (2005). On art and science in curve-fitting vibrational spectra. Vibrational spectroscopy, 2(39), 266-269.
- Naylor, C. C., Meier, R. J., Kip, B. J., Williams, K. P., Mason, S. M., Conroy, N., & Gerrard, D. L. (1995). Raman spectroscopy employed for the determination of the intermediate phase in polyethylene. Macromolecules, 28(8), 2969-2978.
- Naudts, J. (2009). The q-exponential family in statistical physics. Central European Journal of Physics, 7, 405-413.
- Paris, O., Zollfrank, C., & Zickler, G. A. (2005). Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis. Carbon, 43(1), 53-66.
- Phillips, J. C. (1996). Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics, 59(9), 1133.
- Rotschild, W. G., Cavagnat, R. M., & Perrot, M. (1987). Vibrational dephasing under fractional (“stretched”) exponential modulation in a liquid crystal system. Chemical physics, 118(1), 33-43.
- Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742.
- Sousa, D. V. D., Guimarães, L. M., Felix, J. F., Ker, J. C., Schaefer, C. E. R., & Rodet, M. J. (2020). Dynamic of the structural alteration of biochar in ancient Anthrosol over a long timescale by Raman spectroscopy. PloS one, 15(3), e0229447.
- Sparavigna, A. C. (2021). Nozioni di q-calcolo nell'ambito del quantum calculus. Zenodo. https://doi.org/10.5281/zenodo.4982846
- Sparavigna, A. C. (2022). Entropies and Logarithms. Zenodo. DOI 10.5281/zenodo.7007520
- Sparavigna, A. C. (2022). Biochar Shape-Stabilized Phase-Change Materials for Thermal Energy Storage. Social Science Research Network, Rochester, New York, DOI 10.2139/ssrn.4310141
- Sparavigna, A. C. (2023). q-Gaussians and the shapes of Raman spectral lines. ChemRxiv. doi:10.26434/chemrxiv-2023-3k422-v4
- Svelto, O. (1998). Principles of Lasers, fourth ed., Plenum Press, New York, 1998, pp. 31–50.
- Tagliaferro, A., Rovere, M., Padovano, E., Bartoli, M., & Giorcelli, M. (2020). Introducing the novel mixed gaussian-lorentzian lineshape in the analysis of the raman signal of biochar. Nanomaterials, 10(9), 1748.
- Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487.
- Tsallis, C., Levy, S. V., Souza, A. M., & Maynard, R. (1995). Statistical-mechanical foundation of the ubiquity of Lévy distributions in nature. Physical Review Letters, 75(20), 3589.
- Umarov, S.,Tsallis, C., Steinberg, S. (2008). On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725.
- Van Vleck, J. H. (1948). The dipolar broadening of magnetic resonance lines in crystals. Physical Review, 74(9), 1168.
- Wojdyr, M. (2010). Fityk: a general‐purpose peak fitting program. Journal of Applied Crystallography, 43(5‐1), 1126-1128.
- Xu, J., He, Q., Xiong, Z., Yu, Y., Zhang, S., Hu, X., Jiang, L., Su, S., Hu, S., Wang, Y. and Xiang, J., 2020. Raman spectroscopy as a versatile tool for investigating thermochemical processing of coal, biomass, and wastes: recent advances and future perspectives. Energy & Fuels, 35(4), pp.2870-2913.
- Yamauchi, S., & Kurimoto, Y. (2003). Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: temperature dependence of Raman parameters. Journal of wood science, 49(3), 235-240.
- Yin, Y., Yin, J., Zhang, W., Tian, H., Hu, Z., Ruan, M., Song, Z. and Liu, L., 2018. Effect of char structure evolution during pyrolysis on combustion characteristics and kinetics of waste biomass. Journal of Energy Resources Technology, 140(7).
- Yasim-Anuar, T. A. T., Yee-Foong, L. N., Lawal, A. A., Farid, M. A. A., Yusuf, M. Z. M., Hassan, M. A., & Ariffin, H. (2022). Emerging application of biochar as a renewable and superior filler in polymer composites. RSC advances, 12(22), 13938-13949.
- Yuan, X., & Mayanovic, R. A. (2017). An empirical study on Raman peak fitting and its application to Raman quantitative research. Applied spectroscopy, 71(10), 2325-2338.
- Zickler, G. A., Smarsly, B., Gierlinger, N., Peterlik, H., & Paris, O. (2006). A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon, 44(15), 3239-3246.
Cite this Article:
International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.