Comparative Studies on Nutrient and Anti–nutrient Composition of Carrot (Daucus carota L.) and Cucumber (Cucumis sativus L.)

Comparative Studies on Nutrient and Anti–nutrient Composition of Carrot (Daucus carota L.) and Cucumber (Cucumis sativus L.)

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): M. O. Aremu, John Agaji Okpele, Hashim Ibrahim, S. C. Ortutu, Mohammed Alhaji Mohammed, Rasaq Bolakale Salau

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.2543 82 763 13-21 Volume 11 - Jan 2022

Abstract

Carrot (Daucus carota L.) and cucumber (Cucumis sativus L.) are underutilized root vegetable and fruit belonging to the Apiaceae and Cucurbitaceae family, respectively. A comparative study was carried out on proximate composition, amino acid profile and anti–nutritional factors of Daucus carota and Cucumis sativus. The proximate composition values (%) for Daucus carota and Cucumis sativus were found to be as follows: Moisture (5.06 and 4.39), ash (7.75 and 15.26), crude fat (6.09 and 4.83), crude fibre (13.04 and 18.25), crude protein (9.39 and 14.39) and carbohydrate by difference (58.67 and 42.90). The calculated fatty acids and metabolizable energy values were 4.87 and 3.86%; 1382.35 and 1152.64 kJ 100/g, respectively. The amino acid profiles revealed that Daucus carota and Cucumis sativus contained nutritionally useful quantities of most of the essential amino acids. The total amino acid (TAA), total essential amino acid (TEAA) (with His), total sulphur amino acid (TSAA) and essential aromatic amino acid (EArAA) for the Daucus carota and Cucumis sativus samples were 82.36 and 64.14; 22.93 and 30.11; 1.26 and 1.71; 2.13 and 2.66, respectively. However, supplementation of essential amino acids is required in a dietary formula based on the flour samples of Daucus carota and Cucumis sativus when comparing the EAAs in this report with the recommended FAO/WHO provisional pattern. The first limiting EAA in both samples was Met and Cys (TSAA). The antinutrient contents of Daucus carota and Cucumis sativus were also found to be as follows: Oxalate (241.67 and 142.45 mg/100 g), saponin (0.22 and 0.91%), alkaloids (2.85 and 2.23%), tannins (329.03 and 254.45 mg/100 g), cyanide (4.01 and 3.03 mg/100 g) and phytate (616.41 and 349.62 mg/100 g). These antinutritional factors have been shown to be deleterious to health or evidently advantageous to human and animal health if consumed at appropriate amounts.

Keywords

Daucus carota, Cucumis sativus, Nutrient, Anti–Nutrient, Amino Acid Analyzer

References

  1. Terry, L. (2011). Health-Promoting Properties of Fruits and Vegetables. CABI. pp. 2–4.
  2. Li, T. S. C. (2008). Vegetables and Fruits: Nutritional and Therapeutic Values. CRC Press. pp. 1–2.
  3. Finotti, E., Bertone, A., Vivanti, V. (2006). Balance between nutrients and anti-nutrients in nine Italian potato cultivars. Food Chemistry, 99 (4), 698. doi:10.1016/j.foodchem.2005.08.046
  4. Sifferlin, A. (2018). Eat This Now: Rainbow Carrots. Time. Retrieved 27th January, 2018.
  5. Mariod, A. A., Mirghani, M. E. S. & Hussein, I. H. (2017). Cucumis sativus, Cucumber: Chapter 16 in : Unconventional Oilseeds and Oil Sources.
  6. Peng, A. C. & Geisman, J. R. (1976). Lipid and fatty acid compositions of cucumbers and their changes suring storage of fresh pack pickles. J. Food Sci. 41:859-862
  7. Robertson, I. A., Eastwood, M. A. & Yeomam, M. M. ( 1979). An investigation into the dietary fibre content of normal varieties of carrot at different development stages. J. Agric. Food Chem. 39: 388 – 391
  8. Simon, P. W. & Lindsay, R. C. (1983). Effects of processing upon objective and sensory variables of carrots. J. Am. Sco. Hortic Sci. 108: 928-934
  9. Aremu, M. O., Ajine, P. L., Omosebi, M. O., Baba, N. M., Onwuka, J. C., Audu, S. S. & Shuaibu, B. S. (2021). Lipid profiles and health promoting uses of carrot (Daucus carota L.) and cucumber (Cucumis sativus L.). Int. J. Sci., 10: 22-29.
  10. AOAC (Association of Official Analytical Chemists), (2006). Official Methods of Analysis of the AOAC (W.Horwitz Editor) Eighteenth Edition. Washighton D.C, AOAC
  11. Olaofe, O. & Akintayo, E. T. (2000). Prediction of isoelectric points of legume and oil seed proteins from amino acid composition. Journal of Technoscience, 4, 49-53
  12. FAO/WHO (1991). Protein quality evaluation report of joint FAO/WHO expert consultative FAO, Food and Nutrient.
  13. Alsmeyer, R. H., Cunningham, A. E. & Happich, M. L. (1974). Equation of predict (PER) from amino acid analysis. Food Technology, 28, 34- 38 .
  14. Bradbury, M. G., Egen, S.V. & Bradbury, J. H. (1999). Determination of all forms of cyanogens in cassava roots and cassava products using picrate paperkits. J. Sci. Food Agric. 79, 593-601.
  15. NRC (National Research Council) (1989). Recommended Dietary Allowance, 10th edition. Washington, DC, USA: National Academic Press.
  16. Aremu, M. O., Olaofe, O. & Akintayo, E. T. (2006a). A comparative study on the chemical and amino acid composition of some Nigerian under-utilized legume flours. Pakistan Journal of Nutrition, 5, 34-38.
  17. Uriah, N. & Izuagbe, Y. (1990). Public Health, Food Industrial Microbiology. Nigeria: University of Benin Press, pp. 1-22.
  18. Adeyeye, E. I. & Ayejuyo, O. O. (1994). Chemical composition of Cola acuminatu and Garcinia kola seeds grown in Nigeria. Journal of Food Science, 45, 223-230
  19. Aremu, M. O., Atolaiye, B. O., Pennap, G. R. I. & Ashika’a, B. T. (2007). Proximate and amino acid composition of mesquite bean (Prosopis africana) protein concentrate. Indian Journal of Botanical Research, 3(1), 97 – 102.
  20. Ijeomah, A. U., Ugwuona, F. U. & Ibrahim, Y. (2012). Nutrient compositions of trees commonly consumed indigenous vegetables of north-central Nigeria. Nig. J. Agric., Food and Env., 8(1): 17-21.
  21. Adeleke, R. O. & Abiodun, O. A. (2010). Chemical composition of three traditional vegetables in Nigeria. Pak. J. Nutr., 9(9), 858–860.
  22. Elias, L. G., Cristales, F. R., Bressani, R. and Miranda, H. (1976). Chemical composition and nutritive value of some grain legumes nutrient. Abstract Revised (Series B/1977), 47, 603 – 864.
  23. Salunkhe, D. K. & Kadam, S. S. (1998). Handbook of World Food Legumes: Nutritional, Chemistry, Processing, Technology and Utilization. CRC Press, Boca Raton, FL.
  24. Asiedu, J. J. (1989). Processing tropical crops: A technological approach. MacMillan Publishers, London, pp. 170 – 172, 226 – 246.
  25. Fagbemi, T. N. & Oshodi, A. A. (1991). Chemical composition and functional properties of full fat fluted seed flour. Nigeria Food Journal, 9, 26 – 32.
  26. Asaolu, S. S., Adefemi, O. S., Oyakilome, I. G., Ajibulu, K. E. & Asaolu, M. F. (2012). Proximate and mineral composition of Nigerian leafy vegetables. Journal of Food Research, 1(3), 214 – 218.
  27. Ali, A. (2009). Proximate and mineral composition of the marchubeh (Asparagus officinalis). World Dairy and Food Science, 4(2), 142-149.
  28. Aremu, M. O., Oko O. J., Ibrahim, H., Basu, S. K., Andrew, C. & Ortutu, S.C. (2015). Compositional evaluation of pulp and seed of plum (Haematostaphis barteri), a wild tree found in Taraba State, Nigeria. Advances an Life Sci. and Techn., 33: 9-17.
  29. Southland, W. M. (1975). Biochemistry of Nutrition. Church Hill Livingstone, New York, pp. 471 – 473. Susane, G. (1996). A challenge for urban and rural development. Agricultural Rural Development, 3, 42-44.
  30. Akachukwu, C. O., & Fawusi, M. O. A. (1995). Growth characteristic, yield and nutritive values of waterleaf. Discovery and Innovations, 7(2), 163 – 172.
  31. Saldanha, L. G. (1995). Fibre in the diet of U.S. Children: results of national surveys. Pediatric, 96, 994-996.
  32. FAO (1986). Compositional analysis method. In: Manuals of Food Quality Control. Food, 7: 203 – 232.
  33. Aremu M. O., Olonisakin, A., Bako, D. A. & Madu, P. C. (2006). Compositional studies and physicochemical characteristics of cashew nut (Anarcadium occidentale) flour. Pak. J. of Nutr., 5: 328 – 333.
  34. Paul, A. and Southgate, D. (1978). The Composition of Foods. 4th Edn. Eleservier, North Holland Biomedical Press, Amsterdam
  35. Aremu, M. O., Ibrahim, H., Bamidele, T. O., Salau, R. B., Musa, B. J. & Faleye, F. J. (2018). Nutrient and antinutrient composition of shea (Vitellaria parodoxa C. F. Gaetn) kernel and pulp in the northeast, Nigeria, Int. J. Sci., 7(9), 56–66.
  36. Adeyeye, E. I. & Aye, P. A. (1998). The effects of sample preparation on the proximate composition and the functional properties of the African yam bean flours. Note I. La Rivista Italiana Delle Sostanze Grasse. 75, 253 – 261.
  37. Audu, S. S. & Aremu, M. O. (2011). Nutritional composition of raw and processed red kidney bean (Phaseolus vulgaris L.) grown in Nigeria. J. Food Agric Environ, 9(3 & 4), 72 – 80.
  38. Olaofe, O., Okiribiti, B. V. & Aremu. M. O. (2007). Chemical evaluation of the nutritive value of smooth luffa (luffa cylindrical) seed’s kernel. Electr. J. Env. & Food Chem., 7(10), 3444 – 3452.
  39. Odumodu, C. U. (2010). Nutrients and anti-nutrients content of dehulled soybean. Continental Journal of Food Science and Technology, 4, 38 – 45.
  40. Aremu, M. O., Bamidele, T. O. and Agere, H., Ibrahim, H. and Aremu, S. O. (2015). Proximate composition and amino acid profile of raw and cooked black variety of tiger nut (Cyperus esculentus L.) grown in northeast Nigeria. Journal of Biology, Agriculture and Healthcare, 5(7), 213–221.
  41. Oshodi, A. A., Esuoso, K. O. & Akintayo, E. T. (1998). Proximate and amino acid composition of some underutilized Nigerian legume flour and protein concentrates. La Rivista Italiana Delle Sostanze Grasse, 75: 409–412.
  42. Kubmarawa, D., Andenyang, I. F. H. & Magomya, A. M. (2009). Proximate composition and amino acid profile of two non-conventional leafy vegetables (Hibiscus cannabinus and Haematostaphis barteri). African Journal of Food Science, 3(9), 233-236.
  43. Kuri, Y. E., Sundav, R. K., Kahuwi, C., James, G. P., & Rwett, D. E. J. (1991). Agriculture and Food Chemistry, 39, 1702.
  44. Olaofe, O., Adeyemi F. O. & Adediran, G. O. (1994). Amino acid and mineral composition and functional properties of some oil seeds. Journal of Agriculture & Food Chemistry, 42, 878-881.
  45. Aremu, M. O., Olaofe, O. & Orjioke, C. A. (2008). Chemical composition of bambara groundnut (Vigna subterranea), kersting groundnut (Kerstingiella geocarpa) and scarlet runner bean (Phaseolus coccineus) protein concentrates. La Rivista Italiana Delle Sostanze Grasse, 85, 56 – 62.
  46. Ghafoorunisa, S. & Narasinga, B. S. (1973). Effect of leucine on enzymes of the tryptophan niacin metabolic pathway in rat liver and kidney. Biochemistry Journal, 134, 425 – 430.
  47. Belvady, B. & Gopalem, C. (1969). The role of leucine in the pathogenesis of canine black tongue and pellagra. Lancet, 2, 956 – 957.
  48. Pellet, P. L. & Young, V. R. (1980). Nutritional evaluation of protein foods, Report of a working group sponsored by the International Union of Nutritional Sciences and the United Nations University World Hunger Programme.
  49. FAO/WHO/UNU, (1985). Energy and protein requirements. Technical report series No. 724, Geneva.
  50. Prince, K. R., Johnson, I. T. and Fenwick, G. R. (1987). The chemical and biological significance of saponins in foods and feeding stuffs. Critical Reviews in Fd. Sci. and Nutri. 26:35–43
  51. Giovannucci, E. (1998). Plant bioactive components: Phytochemistry. Biols Res. 33,159–165.
  52. Johnson, I. T., Gee, J. M., Price, K., Curl, C. & Fenwick, G. R. (1986). Influence of saponin on gut permeability and active nutrient transport in vitro. J. Nutr. 116:2270–2277.
  53. Su, H. & Guo, R. (1986). Inhibition of acrosine activity of human spermatozoa by saponins of Bulbostermma paniculatum Xtian Yike Daxue Xuebae. Chem. Abstr. 1008, 49459.
  54. Pant, G., Panwaar, M. S., Negi, D. S. & Rawat, M. S. (1989). Spermicidal activity of triterpenoid glucosides of Pentapanax leschenaultii, Ibid. 54, 477–482.
  55. Hossain, M. A. & Becker, K. (2001). Nutritive value and anti–nutritional factors in different varieties of sesbania seeds and their morphological fractions. Food Chem. 73:421–431.
  56. Laurena, A.C., Van, T. & Mendoza, M. A. T. (1984). Effects of condensed tannins on the invetro digestibility of cow pea (Vigna unguiculata). J. Agric Food Chem. 32:1045–1049.
  57. Audu, S. S., Aremu M. O. & Lajide, L. (2013). Effects of processing on physicochemical and antinutritional properties of black turtle bean (Phaseolus vulgaris L.) seeds flour. Oriental J. of Chem. 29(3), 979–989.
  58. Fernando, R., Pinto, M. D. P. & Pathmeswaran, A. (2012). Goitrogenic food and prevalence of goitre in Sri Lanka. J. Food Sci. 41:1076–1081.
  59. Ogungbenle, H. N. & Onoge, F. (2014). Nutrient composition and functional properties of raw, defatted and protein concentrate of sesame (Sesamum indicum) flour. European Journal of Biotechnology and Bioscience. 2(4), 37–43.
  60. Butler, L. G. (1989). Effects of condensed tannins on animal nutrition. In: Chemistry and Significance of Condensed Tannins. Hemingway, R. W. and Karchesy, J. J., Eds. Plenum Press, New York. 391–402.
  61. Noonan, S. C. & Savage, G. P. (1999). Oxalic acid and its effects on humans. Asia Pacific Journal of Clinical Nutrition. 8, 64–74.
  62. Gemede, H. F. & Ratta, N. (2014). Antinutritional factors in plant foods: Potential health benefits and adverse effects. International Journal of Nutrition and Food Sciences, 3(4), 284–289.
  63. Carnovale, E., Lugaro E. & Marconi, E. (1991). Protein quality and anti–nutritional factors in wild and cultivated species of Vigna spp. Plant Food for Human Nutrition. 4:11–20.
  64. Bjarnholt, N. & Moller, B. L. (2008). Hydroxynitrile glucosides. Phytochemistry, 69, 1947–1961.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper