Author(s)
Author(s): Vincent Ishola Esan, Taiwo Ayanniyin Ayanbamiji, Janet Omoyemi Adeyemo, Sunday Oluwafemi
Download Full PDF
Read Complete Article
DOI: 10.18483/ijSci.1533
~ 248
` 724
a 36-43
Volume 7 - Feb 2018
Abstract
Tomato is a sensitive crop to a variety of environmental stresses, especially drought. Therefore, the objective of the present work was to screen for drought tolerance at seed and seedling (vegetative) levels for better understanding of drought mechanisms and identification and selection of the most tolerant tomato genotypes. Twenty four (24) tomato genotypes were screened for drought tolerance using 0%, 4% and 14% polyethylene glycol 6000 (PEG 6000). The experiment was laid in complete randomized design with three replication and three treatments. The following parameters: germination percentage, shoot length, root length, shoot and root weight and recovery date were recorded in the course of the experiment. There was no significant difference in germination percentage between control and low PEG. However, significant differences were observed between control and low concentration of PEG when compared to high PEG concentration. Water stress created by PEG 6000 at high concentration (14%) significantly reduced all the parameters measured in all the genotypes. Overall, NGB01357, L00170 and NHGB/09/113 performed better under drought conditions and could be very vital in breeding program.
Keywords
Tomato genotypes, solutions of PEG 6000, germination, water stress
References
- Abdel-Raheem, A. T., Ragab, A. R., Kasem, Z. A., Omar, F. D. & Samera, A. M. (2007). In vitro selection for tomato plants for drought tolerance via callus culture under polyethylene glycol (PEG) and mannitol treatments. Afr. Crop Sci. Soc., 8, 2027-2032. http://dx.doi.org/10.1007/s12298-013-0162-x
- Boyer JS. 1982. Plant productivity and environment. Science, 218,443–448. http://www.lifesciencesite.com.
- Brdar-Jokanović, M., Girek, Z., Pavlović, S., Ugrinović, M., & Zdravković, J. (2014b): Shoot and root dry weight in drought exposed tomato populations. Genetika, 46(2), 495-504. http://dx.doi.org/10.2298/GENSR1402495B.
- Food and Agricultural Organization (2010). FAO production year Book, Rome.
- Faostat (Food and Agriculture Organization of the United Nations) (2013). Data, various years. Available from URL:http://faostat.fao.org/cgi-bin/nph-db.pl?subset=agriculture.
- Ghebremariam, K.M., Liang, Y., Li, C., Li, Y., & Qin, L. (2013). Screening of tomato inbred-lines for drought tolerance at germination and seedling stage. Journal of Agricultural Science, 5(11), 93-101. http://dx.doi.org/10.5539/jas.v5n11p93
- Hegarty, T. W. (1977). Seed activation and seed germination under moisture stress. New Phytol., 781, 349-359. http://dx.doi.org/ 10.1111/j.1469-8137.1977.tb04838.x
- Horneburg, B.; & Myers, J. R. (2012): Tomato: Breeding for improved disease resistance in fresh market and home garden varieties. In: Lammerts Van Bueren, E. T. & Myers, J. R. (2012): Organic crop breeding. Chichester: Wiley-Blackwell. http://dx.doi.org/ 10.1002/9781119945932.ch15
- Kalloo, G. (1993). Genetic Improvement of vegetable crops. In Tomato. Kallo, G & Bergh, B. O. (eds). Pergamon Press, New York, 645-666.
- IPCC (INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE). (2007). IPCC, 2007: Summary for Policymakers. In:
- Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- Jajarmi, V. (2009). Effect of water stress on germination indices in seven wheat cultivar. World Academy of Science, Eng. Technol., 49,105-106.
- Jokanović M. B. & Zdravković J. (2015). Germination of tomatoes under PEG-induced drought stress. Ratar. Povrt., 52(3), 108-113. http://dx.doi.org/10.5937/ratpov52-8324
- Khodarahmpour, Z. (2011). Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. Afr. J. Biotech., 10, 18222-18227. http://dx.doi.org/10.5897/AJB11.2639
- Kocheva, K. & Georgiev G. (2003). Evaluation of the reaction of two contrasting barley (Hordeum vulgare L.) Cultivars in response to osmotic stress with PEG 6000. Bulg. J. Plant Physiol., 290-294. bio21.bas.bg/ipp/gapbfiles/essa-03/03_essa_290-294
- Kulkarni M., & Deshpande U. (2007). Gradient in vitro testing of tomato (Solanum lycopersicon) genotype by inducing water deficit: a new approach to screen germplasm for drought tolerance. Asian journal of plant sciences, 6(6), 934-940. http://dx.doi.org/ 10.3923/ajps.2007.934.940
- Lisar, S. Y. S.; Motafakkerazad, R.; Hossain, M. M.; & Rahman I. M. M. (2012). Water Stress in Plants: Causes, Effects and Responses, In Water Stress; Prof. Ismail Md. Mofizur Rahman Ed., InTech: New York, USA. http://dx.doi.org/10.5772/39363. Available online: http://www.intechopen.com/books/water-stress/water-stress-in-plants-causes-effects-and-responses.
- Lobell, D. B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W. P., Naylor, R.L. (2008): Prioritizing climate change adaptation needs for food security in 2030. Science, 319,607-610. http://dx.doi.org/10.1126/science.1152339
- Mantri, N., Patade, V., Penna, S., Ford, R., & Pang, E. C. K. (2012). Abiotic stress responses in plants—present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism to productivity. Springer, Science + Business Media NY, USA, pp 1–19. http://dx.doi.org/10.1007/978-1-4614-0634-1_1
- Michel, B. E., & Kaufman M. R. (1973). The osmotic pressure of polyethylene glycol 6000. Plant Physiol., 51,914-916.
- Olaoye, G. (2005). Developing drought tolerant crop varieties for the Savanna Agro-ecologies of Nigeria. Genetics and food security in Nigeria 165-174.
- Osman Basha, P., Sudarsanam, G., Madhu Sudhana Reddy M. & Siva Sanka, N. (2015). Effect of peg induced water stress on germination and seedling development of tomato germplasm. International Journal of Recent Scientific Research, 6(5), 4044-4049. http://dx.doi.org/ 10.24327/IJRSR
- Robin, S.; Pathan, M. S; Courtois, B.; Lafitte, R.; Carandang, S.; Lanceras; S.; Amante, M.; Nguyen, H.T., & Li, Z. (2003). Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theoretical and Applied Genetics., 107, 1288-1296. http://dx.doi.org/ 10.1007/s00122-003-1360-7
- Sakthivelu, G., Devi, M. K. A., Giridhar, P., Rajasekaran, T., Ravishankar, G. A. Nedev, T. & Kosturkova, G. (2008). Drought induced alterations in growth, osmotic potential and in vitro regeneration of soybean cultivars. Genet. Appl. Plant Physiol., 34, 103-112. bio21.bas.bg/ipp/gapbfiles/v-34_pisa-08/08_pisa_1-2_103-112
- Toosi, A. F. Bakar, B. B., & Azizi, M. (2014). Effect of drought stress by using PEG 6000 on germination and early seedling growth of Brassica juncea Var. Ensabi. Agronomy, Vol. LVII:360-363. ISSN Online 2285-5807; ISSN-L 2285-5785
- Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Front Physiol.; 3, 347-359. http://dx.doi.org/10.3389/fphys.2012.00347
- Turk, M. A., Rahmsn, A., Tawaha, M. & Lee, K. D. (2004). Seed germination and seedling growth of three lentil cultivars under moisture stress. Asian J. Plant Sci., 3: 394-397. http://dx.doi.org/10.3923/ajps.2004.394.397
- Van den Berg, L., & Zeng, Y. J. (2006). Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000. Afr. J. Bot., 72: 284-286.
- Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247-273. http://dx.doi.org/10.1146/annurev.arplant.53.091401.143329
Cite this Article:
International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.