Author(s)
Author(s): Atim David Asitok, Sylvester Peter Antai, Maurice George Ekpenyong
Download Full PDF
Read Complete Article
DOI: 10.18483/ijSci.1344
~ 154
` 545
a 5-21
Volume 6 - Jul 2017
Abstract
Three hydrocarbonoclastic bacteria isolated from crude oil-impacted mesotidal waters of the Niger Delta area of Nigeria, and identified, by 16S rRNA sequencing, as Vibrio fluvialis OWPB63, Serratia sp. MWPB18 and Pseudomonas fluorescens OWPB17 demonstrated commendable protease production ability in skimmed milk-minimal medium. Protease biosynthesis commenced in all three bacteria before the first 2 h of fermentation with peak productivities of 4.12, 0.73 and 1.12 μg/mL/h reached at 12, 36 and 48 h for Vibrio fluvialis, Serratia sp. and Pseudomonas fluorescens respectively. Activities of the enzymes assessed with azocasein as standard substrate were respectively 116.61, 174.56 and 145.84μg/mL/min. Median inhibition concentration (IC50) for Vibrio fluvialis enzyme biosynthesis, significantly (P<0.05, 0.01) influenced by exposure time, was <10% (<0.91 mg/L) with a corresponding IC50 for protease activity of <50% (<4.55 mg/L). This suggests that protease biosynthesis was more amenable to toxicity by WSF than its activity. Supplementation of respective crude bacterial proteases in pure-culture biodegradation medium containing casein-N significantly (P = 0.005; R2 = 0.9914) enhanced hydrocarbonoclasis, however only 13.8 mg C-CO2 was evolved in the mixed-culture study as against 98.4 mg in the control containing NH4Cl. These findings imply that inhibition of bacterial protease biosynthesis by WSF of crude oil reduces nitrogen availability thus limiting natural attenuation opportunities oil-spilled aquatic ecosystems.
Keywords
Crude oil, Water soluble fraction, Protease, biosynthesis, Toxicity, Vibrio fluvialis OWPB63
References
- Antai, S. P. & Mgbomo, E. (1989). Distribution of hydrocarbon-utilizing bacteria in oil spill areas. Microbios Letters, 40: 137-143.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
- https://doi.org/10.1016/0003-2697(76)90527-3
- Chapin, K. C. & Lauderdale, T. (2003). Reagents, stains and media: bacteriology In Murray, P. R., Baron, E. J., Jorgensen, J. H., Pfaller, M. A. and Yolken, R. H. (Eds.) Manual of Clinical Microbiology (8th edition) (p. 358). Washington DC: ASM Press.
- Das N. & Chandran, P (2011). Microbial degradation of hydrocarbon contaminants: an overview. Biotechnology Research international, volume 2011. https://doi.org/10.4061/2011/941810
- Dutton, R. J., Bitton, G. & Koopman, B. (1988). Enzyme biosynthesis versus enzyme activity as a basis for microbial toxicity testing. Toxicity Assessment, 3, 245243. https://doi.org/10.1002/tox.2540030302
- Ekpenyong, M. G. & Antai, S. P. (2007). Influence of pH on cadmium toxicity to species of Bacillus (02 and 12) during biodegradation of crude oil. International Journal of Biological Chemistry, 1: 29-37.
- https://doi.org/10.3923/ijbc.2007.29.37
- Ekpenyong, M. G., Antai, S. P. & Asitok, A. D. (2016). A Pseudomonas aeruginosa strain IKW1 produces an unusual polymeric surface-active compound in waste frying oil-minimal medium. International Journal of Sciences, 5 (6): 108-123. https://doi.org/10.18483/ijSci.1064
- Ekpenyong, M. G., Antai, S. P. & Essien, J. P. (2007). Quantitative and qualitative assessment of hydrocarbon degrading bacteria and fungi in Qua Iboe Estuary, Nigeria. Research Journal of Microbiology, 2:415-425. https://doi.org/10.3923/jm.2007.415.425
- Ekpenyong, M., Antai, S., Asitok, A. & Ekpo, B. (2017). Response surface modeling and optimization of major medium variables for glycolipopeptide production. Biocatalysis and Agricultural Biotechnology, 10: 113-121. https://doi.org/10.1016/j.bcab.2017.02.015
- Gulati, R., Saxena, R. K. & Gupta, R. (1997). A rapid plate assay for screening L-asparaginase producing microorganisms. Letters in Applied Microbiology, 24: 23 – 26.
- https://doi.org/10.1046/j.1472-765X.1997.00331.x
- Harayama, S., Kishira, H., Kasai, Y. & Shutsubo, K. (1999). Petroleum biodegradation in marine environments. Journal of Molecular Microbiology and Biotechnology, 1, 63-70.
- Itah, A. Y. & Essien, J. P. (2005). Growth profile and hydrocarbonoclastic potential of microorganisms isolated from tarballs in the Bight of Bonny, Nigeria. World Journal of Microbiology and Biotechnology, 21: 1317-1322. https://doi.org/10.1007/s11274-004-6694-z
- Leahy, J. G. & Colwell, R. R. (1990). Microbial Degradation of hydrocarbons in the environment. Microbiological Reviews, 54: 305-315.
- Odokuma, L. O. & Akponah, E. (2008). Response of Nitrosomonas, Nitrobacter and Escherichia coli to drilling fluids. Journal of Cell and Animal Biology, 2, 4354.
- Okoh, A. I. (2006). Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnology and Molecular Biology Review. 1 (2): 38-50.
- Oluwasuji, O. (2007) “Internal colonialism and the national question in Nigeria: The Niger Delta restiveness”, In: Oyekanmi, F.D. and Soyombo, O. (eds.) Society and Governance: The quest for legitimacy in Nigeria. Lagos: Department of Sociology, University of Lagos and Friedrich Ebert Stiftung, Lagos, Nigeria, Pp 67-79.
- Phatarpekar, P. V. & Ansari, Z.A. (2000). Comparative toxicity of water soluble fractions of four oils on the growth of a Microalga. Botanica Marina, 43, 367375. https://doi.org/10.1515/BOT.2000.037
- Rodrigues, L. R., Teixeira, J. A. & Oliveira, R. (2006). Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical Engineering Journal, 32: 135-142.
- https://doi.org/10.1016/j.bej.2006.09.012
- Rodrigues, R. V., Miranda-Filho, K. C., Gusmao, E. P., Moreira, C. M., Romano, L. A. & Sampaio, L. A. (2010). Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Science of the Total Environment, 408, 2054-2059.
- https://doi.org/10.1016/j.scitotenv.2010.01.063
- Stotzky, C. (1965). Determination of carbon dioxide. In Madison, C. A. B (Ed.), Methods of Soil analysis Part 2; Chemical and Microbiological properties. American Society of Agronomy Inc, Madison, USA.
- Thijsee,G. J. E. & van der Linden, A. C. (1961). Iso-alkane oxidation by a Pseudomonas. Antonnie van Leeuwenhoek, 27: 171-179. https://doi.org/10.1007/BF02538437
- Ukpong, I. (2008). Conflict resolution in the oil and gas industry’s operational areas. Paper presented at NOSDRA’s Stakeholders Consultative Workshop for the Oil and Gas Sector. 4th-7th August, 2008, Calabar, Nigeria.
- Usharani, B. & Muthuraj, M. (2010). Production and characterization of protease enzyme from Bacillus laterosporus. African Journal of Microbiology Research, 4, 1057-1063.
- Van Hamme, J. D, Singh, A, & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67: 503-549.
- https://doi.org/10.1128/MMBR.67.4.503-549.2003
- Vazquez, S. C., Hernandez, E. & MacCormack, M. P. (2008). Extracellular proteases from the Antartic marine Pseudoalteromonas sp. P96-47 strain. Revista Argentina de Microbiologia, 40, 63-71.
Cite this Article:
International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.