Fatty Acid, Phospholipid and Sterol Compositions of Breadfruit (Artocarpus altilis) and Wonderful Kola (Buchholzia aoriacea) Seeds

Fatty Acid, Phospholipid and Sterol Compositions of Breadfruit (Artocarpus altilis) and Wonderful Kola (Buchholzia aoriacea) Seeds

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): M. O. Aremu, A. Haruna, O. J. Oko, S. C. Ortutu

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1260 242 623 116-123 Volume 6 - Apr 2017

Abstract

A comprehensive study on fatty acid, phospholipid and phytosterol compositions of breadfruit (Artocarpus altilis) and wonderful kola (Buchholzia coriacea) seeds flour were determined using standard analytical techniques. The most concentrated fatty acid (%) was oleic acid in Artocarpus altilis seed (56.775) while linoleic acid (42.644) was the most concentrated acid in Buchholzia coriacea seeds. The increasing order of the concentrated fatty acids in Artocarpus altilis seeds were: stearic acid (4.723) < palmitic acid (11.412) < linoleic acid (25.710) < oleic acid (56.775) < while that of Buchholzia coriacea seeds were: linolenic acid (2.197) < stearic acid (6.734) < palmitic acid (11.241) < oleic acid (35.719) < linoleic acid (42.644), respectively. Arachidinic, linolenic, erucic, palmitoleic, behemic, lignoceric, arachidonic, margaric, myristic, lauric, capric, caprilic and caproic acids were present in small quantities with none of them recording up to 1.0% in both the two plant seeds. The results also showed high concentration of monounsaturated fatty acids (MUFA) (57.071%) in Artocarpus altilis and 36.739% in Buchholzia coriacea, and values of polyunsaturated fatty acids (PUFA) were 0.125 and 2.212% for the two plant seeds, respectively. The respective phospholipids composition of phosphatidylserine (204.75 mg/100g) and phosphatidylinositol (29.35 mg/100g) showed a highest concentration in Artocarpus altilis and Buchholzia coriacea while diphosphatidylglycerol was the least phospholipid with concentrations of 0.11 and 0.01 mg/100 g for both samples. The concentrations of phytosterols were of low values except in sitosterol with values of 90.81 and 31.24 mg/100 g in Artocarpus altilis and Buchholzia coriacea respectively. This study provides an informative oil profile that will serve as a basis for further chemical investigations and nutritional evaluation of the Artocarpus altilis and Buchholzia coriacea seed oils.

Keywords

Breadfruit, wonderful kola, fatty acids, phospholipids, phytosterols

References

  1. Achinewhu, S. C. (1998). Nuts and seeds. In: Nutritional Qualities of Plants Foods, A. U.Osagie and U. E. Offiong (eds), pp.154–159.
  2. Aremu, M. O., Olayioye, Y. E. & Ikokoh, P. P. (2009). Effect of processing on the nutritional quality of Kerstingella geocarpa seed flour. J. Chem. Soc. Nigeria. 34(2), 140–149.
  3. Oyenuga, V. A. (1982). Nigerian Foods and Feeding Stuff: Their Chemistry and Nutritive Value, 3rd edition, University Press, Ibadan.pp 22–23.
  4. Odoemelam, S. A. (2005). Proximate composition and selected physicohemical properties of the seeds of African oil bean (Pentaclethra marcrophylla). Pak. J. Nutri., 4, 382 – 383.
  5. Aremu, M. O. Olaofe, O., Basu, S. K., Abdulazeez, G. & Acharya, S. N. (2010). Processed cranberry bean (Phaseolus coccineus) seed flours for African diet. Canadian J. Plant Science, 90, 719 – 728.
  6. Taylor, M. B. & Tuia, V. S. (2007). Breadfruit in the pacific Region. Acta Horticulturae (ISHS), 757, 43-50.
  7. National Tropical Botanical Garden (NTBG) (2009). Hunger Initiative. Breadfruit Institute. National Tropical Botanical Garden.
  8. Morton, J. (1987). Breadfruit: Fruits of Warm Climates, Jr .Dowling, CF. (Ed.). Greensborough, US: Media Incorporated, 50-63.
  9. Amusa, N. A., Kehinde, I. A. & Ashaye, O. A. (2002). Biodeterioration of breadfruit (Artocarpus communis) in storage and its effects on the nutrient composition. Afr. J. Biotech., 1, 57-60.
  10. Adisa, R. Choudhary, M., Adewoye, E. & Olorunsogo, O. 2010. Hypoglycaemic and biochemical properties of Cnestis ferruginea. Afr. J. Tradit. Med., 7, 185-194.
  11. Ajaiyeoba, E. O., Onocha, P. A., Nwozo, S. O. & Sama, W. (2003). Antimicrobial and cytotoxicity evaluation of Buchholzia coriacea stem back, filtoterapia 74 (7-8), 706 – 709.
  12. Ezekiel, O. O. & N.F. Onyeoziri (2009). Preliminary studies on antimicrobial properties of Buchholzia coriacea. African J. Biotech., 8(3), 472-474.
  13. Fred-Jaiyesimi, A., Ogbole, O., Anthony, O. & Egebunmi, O. (2011). Larvicidal effect of pet, ether, chloroform fractions and methanol extract of Buccholzia coriacea Engle seed. Int. J. Pharmaceutical Sci. & Res., 2(7), 1736-1738.
  14. Taylor, M. B. & Tuia, V. S. (2007). Breadfruit in the pacific Region. Acta Horticulturae (ISHS), 757, 43-50.
  15. Akintayo, E. T. and Bayer, E. (2002). Characterization and some possible uses of Philkenetia conophora and Adenopus brevilorus seeds and seed oils. Bioresources Technol. J. 85, 95–97.
  16. Adeleke, R. O. & Abiodun, O. A. (2010). Nutritional composition of breadnut seed (Artocarpuscamansi). African J. Agric. Res., 5(11), 1273-1276.
  17. Ijarotimi, O. S., Nathaniel, F. T. & Faramade, O. O. (2015). Determination of chemical composition, nutritional quality and anti–diabetic potential of raw, blanched and fermented wonderful kola (Buchholzia coriacea) seed flour. J. Hum Nutr. Food Sci., 3(2), 1060.
  18. Grosso, N, R., Zygadlo, J. A., Lamarque, A. L., Maestri, D. M. & Guzman, C. A. (1997). Proximate, fatty acid and sterol compositions of aboriginal peanut (Arachis hypogaea L.) seeds from Bolivia. J. Sci. Food Agric., 73, 249 – 356.
  19. Kris-Etherton, P. M., Pearson, T. A., Wan, Y., Hargrove, R. L., Moriarty, K., Fishell, V.& Etherton, T. D. (1999). High–monounsaturated fatty acid diets lower both plasmacholesterol and triacylglycerol concentrations, Am. J. Clin. Nutr., 70, 1009–1015.
  20. Aremu, M. O., Awala, E. Y., Opaluwa, O. D., Odoh, R. & Bamidele, T. O. (2015). Effect of processing on nutritional composition of African locust bean (Parkia biglobosa) and mesquite bean (Prosopis africana) seeds. Communication in Applied Sciences, 3(1), 22–41.
  21. Aremu, M. O. & Amos, V. A. (2010). Fatty acids and physicochemical properties of sponge luffa (Luffa cylindrical) kernel oils, Int. J. Chem. Sci., 3(2), 161-166.
  22. Ajayi, F. A., Aremu, M. O., Mohammed, Y., Madu, P. C., Atolaiye, B. O., Audu, S. S. & Opaluwa, O. D. (2014). Effect of processing on fatty acid and phospholipid composition of Harms (Brachystegia eurycoma) seeds grown in Nigeria. Chm. and proc. Eng. Res., 22, 18-25.
  23. Baird, J., Fisher, D., Lucas, P., Kleijnen, J., Roberts, H. & Law, C. (2005). Beingbig or growing fast: systematic review of size and growth in infancy and later obesity. B.M.J, 331, 929–934.
  24. Salunkhe, D. K., Kadam, S. S. & Chavan, J. K. (1985). CRC Postharvest Biotechnology of Food Legumes. CRC Press, Bola Raton, FL.
  25. Aremu, M. O., Ibrahim, H. & Aremu, S. O. (2016). Lipid composition of black variety of raw and boiled tiger nut (Cyperus esculentus L.) grown in north – east Nigeria. Pak. J. Nutr., 15(5), 427-438.
  26. Adeyeye, E. I., Oshodi, O. O. & Ipinmoroti, K. O. 1999. Fatty acid composition of six varieties of dehulled African yam bean (sphenostylis stenocarpa) flour. Int. J. Food Sci. & Nutr., 50, 357-365.
  27. Aremu, M. O., Mamman, S. & Olonisakin, A. (2013). Evaluation of fatty acids and physicochemical characteristics of six varieties of bambara groundnut (Vigna subterranea L. Verdc.) seed oils. La Rivista Italiana Delle Sostanze Grasse, 90, 107–113.
  28. Hilditch, T. P. & Williams, P. N. (1964). Chemical constitution of natural fats. Chapman and Hall London, UK, pp, 58-69.
  29. McLeod, G. & Ames, J. (1988). Soy flour and its improvement. Crit. Rev. Food Sci. and Tech., 27, 219-259.
  30. Audu, S. S., Aremu, M. O. & Lajide, L. (2011). Effect of processing on fatty acid composition of pinto bean (phaseolus vulgaris L.) seeds. Int. J. Chm. Sci., 4, 144-199.
  31. Ijarotimi, O. S. & Keshinro, O. O. (2012). Comparison between the amino acid, fatty acid, mineral and nutritional quality of raw, germinated and fermented African locus bean (Parkia biglobosa) flour. Acta Sci. Pol. Technol. Aliment, 11, 151 – 165.
  32. Ogbuagu, M. N. & Odoemelam, S. A. (2013). Fatty acid and amino acid profile of an under-utilized tropical African seeds (Adenanthera pavonina). Pac. J. Sci. & Tech., 14, 310-318.
  33. Hegested, D. M., Dusman, L. M., Johnson, J. A. & Dallal, D. E. (1993). Dietary fat and serum lipids; an evaluation of the experimental data. Am. J. Clin. Nutr., 57, 875-883.
  34. Cunnane, S. & Anderson, M. (1997). Pure linoleate deficiency in the rat: influence on growth, accumulation of n-6 polyunsaturates and (1-14C) linoleate oxidation. J. Lipid Res., 38, 805-812.
  35. Ruthing, D. J. & Meckling-Gill, K. A. (1999). Both (n-3) and (n-6) fatty acid stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J. Nutr., 129, 1791-1798.
  36. Connor, W.E., Neuringer, M. and Reisbick, S. (1992). Essential fatty acid: the importance of n-3 fatty acid in the retina and brain. Nutr. Rev., 50, 21-29.
  37. Mozaffarian, D. (2005). Does linolenic acid intake reduce the risk of coronary heart disease? A review of the evidence. Alternative Therapies in Health & Med.,11, 24 – 30.
  38. F.B. Hu, M.J. Stampfer & J.E. Manson, (1999). Dietary intake of linolenic acid and risk of fatal ischemic heart disease among women. Am. J. Clin. Nutr., 69, 890-897.
  39. Branch, W. D., Nakayama, T. & Chennan, M. S. (1990). Fatty acid variation among US runner type peanut cultivars. J. Am. Oil Chem. Soc., 67, 591-596.
  40. Aremu, M. O., Ogunlade, I. & Olonisakin, A. (2007). Fatty acid and amino acid composition of cashew nut (Anarcadium occidentale) protein concentrate. Pak. J. Nutr., 6, 419-423.
  41. Wirtz, K. W. (1991) Phospholipid transfer proteins: from lipid monolayers to cells. Klin Wochenschr, 69(3):105-11.
  42. Adeyeye, E. I., Adesina, A. Y., Ginika, M. C. & Ariyo, H. E. (2012). Great Barracuda: Its skin and muscle fatty acids, phospholipids and zoosterol’s composition. Int, J. Chem. Sci., 5(1), 18 – 28.
  43. Chung, H. M., Sun, J. M., Morell, M. J. & Houpian, D. S. (1995). Intracerebral involvement in selerodema en coup de sarbre, report of a case with neuropathogenic finding. Ann Neuro., 37, 679-681.
  44. Wang, Y. M. & Jones, P. J. H. (2004). Conjugated linoleic acid and obesity control, efficacy and mechanism. Int. J. Obes., 941-955. Dio10:1038/sj.ijo.0802641.
  45. Starks, M. A., Starks, S. L., Kingsley, M., Purpura, M. & Jager, R. (2008). The effects of phosphatidylserine endocrine response to moderate intensity exercise. Int. Soc. Sports & Nutr., 5, 11 – 16.
  46. Kris–Etherton, P. M., Parson, T. A., Wan, Y., Hargrove, B. L., Moriarty, K., Fishell, V. and Etherton, T. D. (1999). High monounsaturated fatty acid diets lower both plasma cholesterol and triacyl-glycerol concentrations. Am. J. Clin. Nutri., 1009–1015.
  47. Awad, A. B. and Fink, C. S. (2000). Phytosterols as anticancer dietary components: Evidence and mechanism of action. J. Nutri., 130, 2127 – 2130.
  48. Akpambarg, V. O. E., Amoo, I. A. and Izuagie, A. A. (2008). Comparative compositional analysis on two varieties of melon (Colocynthis citrullus and Cucumeropsis edulis) and a variety of almond (Prunus amygdalus). Res. J. Agric and Bio. Sci., 4(6), 639 – 642.
  49. Codex Alimentarius Commission Graisses et Huiles Vegetales Division 11 (1993) Version Abregee FAO/WHO. Codex Stan, 20: 23 – 198.
  50. Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J. and Lampi, A. M. (2000). Plant sterols biosynthesis biological function and their importance to human. Nutri. J. Sci. Food and Agric, 80: 939 – 966.
  51. Morean, R. A., Whitaker, B. D. and Hicks, K. B. (2002). Phytosterols, phytostanols and their conjugates in foods: Structural diversity, quantitative analysis and health–promoting uses. Prog. In Lipid Res., 41: 457 – 500.
  52. Law, M. (2000). Plant sterol and stanol magarines and health. Br. Med. J., 320: 861 – 864.
  53. Garcia–Llatas, G., Cercaei, L., Rodriguez–Estrada, M. T., Lagarda, M. J., Farre, R. and Lercker, G. (2008). Sterol oxidation in ready–to–eat infant foods during storage. J. Agric and Food Chem., 56: 469 – 475.
  54. Rao, Y. and Koratkar, R. (1997). Anticaercinogenic effects of saponins and phytosterols. Am. Chemical Society, 18: 313 – 324.
  55. Normen F., Holmes, L. D. and Frohlich, J. (2005). Plant sterols and their role in combined use with statins for lipid lowering. Curr. Opin. Invest. Drugs, 2, 307 – 316.
  56. Pollak, O. J. and Kristshevsky, D. (1981). Sistosterol. Monograph Atherosclerosis, 10: 1 – 219.
  57. Chen, Q., Gruber, H, Swist, E, Coville, K, Pakenham, C, Ratnayake, W. M. N. and Scoggern, K. A. (2010). Dietary phytosterols and phytostanols decrease cholesterol levels but increase blood pressured and WKY in bred rats in the absence of salt load loading. Nutri. and Metabol. 7: 11 – 20.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper