Image Segmentation Applied to the Study of Micrographs of Cellular Solids

Image Segmentation Applied to the Study of Micrographs of Cellular Solids

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Amelia Carolina Sparavigna

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1201 260 750 68-76 Volume 6 - Feb 2017

Abstract

The paper is proposing a method of image segmentation applied to the study of the micrographs of cellular solids. The segmentation is based on a thresholding which creates a binary (black and white) image of the micrograph. The binary image is divided in super-pixels which correspond to the microcells of the material. From the areas of the super-pixels it is easy to evaluate the distribution of the size of the cells and correlate this distribution to the properties of the material.

Keywords

Image Processing, Image Segmentation, Cellular Solids

References

  1. Gibson, L. J., & Ashby, M. F. (1997). Cellular solids. Cambridge University Press, Cambridge. ISBN: 9780521499118
  2. Gibson, L. J. (2005). Biomechanics of cellular solids. Journal of Biomechanics, 38 (3), 377–399. DOI: 10.1016/j.jbiomech.2004.09.027
  3. Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in materials Science, 46 (6), 559–632. DOI: 10.1016/S0079-6425(00)00002-5.
  4. Banhart, J., & Dunand, D. C. (2007). MetFoam 2007: Porous metals and metallic foams : Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams. September 5-7, 2007, Montreal Canada. DEStech Publications, Inc, 2008.
  5. Nussinovitch, A. (2005). Production, properties, and applications of hydrocolloid cellular solids. Mol. Nutr. Food Res., 49 (2), 195-213. DOI: 10.1002/chin.200551273
  6. Schladitz, K. (2011). Quantitative micro-CT. Journal of Microscopy, 243 (2), 111–117. DOI: 10.1111/j.1365-2818.2011.03513.x
  7. Latief, F. D. E. (2016). Analysis and visualization of 2D and 3D grain and pore size of Fontainebleau sandstone using digital rock physics. Journal of Physics: Conference Series, 739 (1), 012047. IOP Publishing. DOI: 10.1088/1742-6596/739/1/012047
  8. Van Dalen, G., & Koster, M. W. (2012). 2D & 3D particle size analysis of micro-CT images. Unilever Res. Dev. Netherlands. Available at http: //www.bruker-microct.com/company/UM2012/ 31.pdf
  9. Cnudde, V., & Boone, M. N. (2013). High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, 1-17. DOI: 10.1016/j.earscirev.2013.04.003
  10. Sparavigna, A. C. (2016). A method for the segmentation of images based on thresholding and applied to vesicular textures. Philica Article number 889. Bibliographic Code: http://adsabs.harvard.edu/abs/2016arXiv161201131S
  11. Shapiro, L. G., & Stockman, G. C. (2001). Computer vision, New Jersey, Prentice-Hall, ISBN 0-13-030796-3
  12. Pham, D. L., Xu, Chenyang, & Prince, J. L. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering. 2: 315–337. DOI: 10.1146/annurev.bioeng.2.1.315. PMID 11701515.
  13. Forghani, M., Forouzanfar, M., & Teshnehlab, M. (2010). Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation. Engineering Applications of Artificial Intelligence, 23 (2), 160–168. DOI: 10.1016/j.engappai.2009.10.002
  14. Vv. Aa. (2016). Wikipedia. https://en.wikipedia.org/wiki/Image_segmentation
  15. Haralick, R. M. (1979). Statistical and structural approach to textures. Proceedings IEEE, 67, 786-804.
  16. Gull, S.F., & Skilling, J. (1984). Maximum entropy method in image processing. Communications, Radar and Signal Processing, IEE Proceedings F, 131(6), 646-659.
  17. Sahoo, P.K., & Arora, G. (2006). Image thresholding using two-dimensional Tsallis – Havrda – Charvát. Pattern Recognition Letters, 27, 520-528. DOI: 10.1016/j.patrec.2005.09.017
  18. Sparavigna, A. C. (2015). Tsallis entropy in bi-level and multi-level image thresholding. International Journal of Sciences, 4(1), 40-49. DOI: 10.18483/ijsci.613
  19. Graham, J. (1992). The hive and the honey bee. Hamilton/IL: Dadant & Sons. ISBN : 9780915698097
  20. Sugden, E. A., & McAllen, R. L. (1994). Observations on foraging, population and nest biology of the Mexican honey wasp. Journal of the Kansas Entomological Society, 141-155.
  21. Hales, T. C. (2001). The honeycomb conjecture. Discrete & Computational Geometry, 25(1), 1-22. DOI: 10.1007/s004540010071
  22. Morgan, F. (1999). The hexagonal honeycomb conjecture. Transactions of the American Mathematical Society, 351(5), 1753-1763.
  23. Peterson, I. (1999). The honeycomb conjecture. Science News, 156(4), 60. DOI: 10.2307/4011652
  24. Thompson, D'Arcy Wentworth (1942). On growth and form. Dover Publications. Available at https://archive.org/details/ongrowthform00thom
  25. Vv. Aa. (2016). Wikipedia, Honeycomb. URL: https:// en.wikipedia.org/wiki/Honeycomb
  26. Vv. Aa. (2016). Wikipedia, Brood comb. URL: https:// en.wikipedia.org/wiki/Brood_comb
  27. Mcmullan, J. B., & Brown, M. J. F. (2006). The influence of small-cell brood combs on the morphometry of honeybees (Apis mellifera). Apidologie, Springer Verlag, 2006, 37 (6), pp.665-672.
  28. Bush, M. (2005). Natural cell size and its implications to beekeeping and Varroa mites. URL: http://www.bushfarms.com/beesnaturalcell.htm
  29. Nazzi, F. (2016). The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 2016; 6: 28341. Published online 2016 Jun 20. DOI: 10.1038/srep28341, PMCID: PMC4913256.
  30. Zhang, Y. J. (1996). A survey on evaluation methods for image segmentation. Pattern recognition, 29(8), 1335-1346.
  31. Russ, J. C., & Woods, R. P. (1995). The image processing handbook. Journal of Computer Assisted Tomography, 19(6), 979-981.
  32. Seeley, T. D., & Morse, R. A. (1976). The nest of the honey bee (Apis mellifera L.). Insectes Sociaux, 23(4), 495-512.
  33. Piccirillo, G. A., & De Jong, D. (2003). The influence of brood comb cell size on the reproductive behavior of the ectoparasitic mite Varroa destructor in Africanized honey bee colonies. Genet. Mol. Res, 2(1), 36-42.
  34. Cavichio Issa, M. R., Goncalves, L. S., & De Jong, D. (1993). Reproductive strategies of the mite Varroa jacobsoni (Mesostigmata, Varroidae): Influence of larva type and comb cell size on honey bee brood infestation rates. Revista brasileira de genética, 16, 219-219.
  35. Harbo, J. R. (1988). Effect of comb size on population growth of honey bee (Hymenoptera: Apidae) colonies. Journal of economic entomology, 81(6), 1606-1610.
  36. Suh, Nam P. (2003). Impact of microcellular plastics on industrial practice and academic research. Macromolecular Symposia, 201 (1), 187–202. DOI: 10.1002/masy.200351122. ISSN 1521-3900
  37. Microcellular Plastics Lab - University of Washington. faculty.washington.edu. Retrieved 2017-02-04.
  38. Abhishek Gandhi, Neelanchali Asija, Kumresh Kumar Gaur, Syed Javed Ahmad Rizvi, Vijay Tiwari, Naresh Bhatnagar (2013) . Ultrasound assisted cyclic solid-state foaming for fabricating ultra-low density porous acrylonitrile–butadiene–styrene foams. Materials Letters. 94 (94), 76–78. DOI: 10.1016/j.matlet.2012.12.024.
  39. Gandhi Abhishek, Neelanchali Asija, Hemant Chauhan, & Naresh Bhatnagar (2014). Ultrasound-induced nucleation in microcellular polymers. Journal of Applied Polymer Science. 131 (18). DOI: 10.1002/app.40742.
  40. Vv. Aa., Wikipedia, URL: https://en.wikipedia.org/wiki/Microcellular_plastic. Retrieved 2017-02-04.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2024

Volume 13, June 2024


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper