Nutritional evaluation of Five Species of Grain Amaranth – An Underutilized Crop

Nutritional evaluation of Five Species of Grain Amaranth – An Underutilized Crop

Loading document ...
Page
of
Loading page ...

Author(s)

Author(s): Pamela E. Akin-Idowu, Oyeronke A. Odunola, Michael A. Gbadegesin, Olufemi T. Ademoyegun, Ayodeji O. Aduloju, Yemisi O. Olagunju

Download Full PDF Read Complete Article

DOI: 10.18483/ijSci.1131 375 1199 18-27 Volume 6 - Jan 2017

Abstract

Variation in the proximate and mineral compositions of twenty nine accessions of grain amaranth (Amaranthus), belonging to five species: Amaranthus caudatus, A. cruentus, A. hybrid, A. hypochondriacus and A. hybridus were evaluated. Results showed that significant (p < 0.05) differences were observed in the proximate and mineral compositions among all the species evaluated. Amaranthus caudatus had the highest levels of crude fibre (4.04 g/100g), sodium (8.95 mg/kg), phosphorus (5765.64 mg/kg), magnesium (2219.15 mg/kg) and aluminum (111.09 mg/kg) contents. Amaranthus cruentus had the highest levels of crude fat (8.68 g/100g), zinc (59.49 mg/kg), copper (6.62 mg/kg), manganese (136.44 mg/kg) and calcium (1642.45 mg/kg). Amaranthus hybridus had the highest levels of protein (17.89 g/100g) and starch (38.01 g/100g). Phosphorus was the most abundant mineral present, followed by potassium and magnesium; while selenium was the least abundant mineral element present. The grain amaranth species have higher protein, crude fibre, starch and essential minerals than commonly consumed cereals and hold promise as a healthy alternative to these cereals and their products.

Keywords

Amaranth, minerals, proximate analysis, species variation

References

  1. Adeyeye A., and Ajewole K., (1992). Chemical composition and fatty acid profiles of cereals in Nigeria. Food Chemistry 44, 41-44.
  2. Ahmed A.M., Lydia J. and Campbell J.L., (2012). Evaluation of Baking Properties and Sensory Quality of Wheat-Cowpea Flour. World Academy of Science, Engineering and Technology 70.
  3. Akin-Idowu P.E., Odunola O.A., Gbadegesin M.A., Oke A. and Orkpeh U., (2013). Assessment of the protein quality of twenty nine grain amaranth (Amaranthus spp. L.) accessions using amino acid analysis and one-dimensional electrophoresis. African J of Biotech 12(15), 1802-1810.
  4. Akubugwo I.E., Obasi N.A., Chinyere G.C. and Ugbogu A.E., (2007). Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria. African J Biotech 6(24), 2833-2839.
  5. Ali A., (2009). Proximate and mineral composition of the Marchubeh (Asparagus officinalis). World Dairy and Food Sci 4(2), 142-149.
  6. Alvarez-Jubete L., Arendt E.K., Gallagher E., (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredient. Int J Food Sci Nutr 60(4), 240-257. doi: 10.1080/09637480902950597.
  7. Anjali K., Joshi A., Maloo S.R. and Sharma R., (2013). Assessment of the morphological and molecular diversity in Amaranthus spp. African J Agric Res 8(19), 2307-2311.
  8. AOAC, Association of Official Analytical Chemists. (2000). Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA.
  9. Aphane J., Chadha M.L. and Oluoch M.O., (2002). Increasing the Consumption of Micronutrient-rich Foods through Production and Promotion of Indigenous Foods. FAO-AVRDC International Workshop Proceedings Arusha, Tanzania, 5–8 March 2002. Hosted by AVRDC-Regional Center for Africa,
  10. Arawande J.O. and Borokini F.B., (2010). Comparative Study on Chemical Composition and Functional Properties of Three Nigerian Legumes (Jack Beans, Pigeon Pea and Cowpea). J Emerging Trends in Engineering and Applied Sciences (JETEAS) 1(1), 89-95.
  11. Azeke M.A., Egielewa S.J., Eigbogbo M.U. and Ihimire I.G., (2011). Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). J Food Sci Technol 48(6), 724–729.
  12. Bakhru H.K., (2007). Foods That Heal: The Natural Way to Good Health. Orient Paperback Limited, 87-109.
  13. Becker R., Wheeler E.L., Lorenz K., Stafford A.E., Grosjean O.K., Betschart A.A. and Saunder R.M., (1981). A compositional study of amaranth grain. J Food Sci 46, 1175-1180.
  14. Belitz H.D., Grosch W., Schieberle P., (2009). Cereals and cereal products. Food chem, 4th edn. Springer, Berlin. 670–675.
  15. Berganza B.E., Moran A.W., Guillermo Rodriguez M., Coto N.M., Santamaria M., Bressani R., (2003). Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Foods Human Nutr 58, 1–6.
  16. Berghofer E. and Schoenlechner R., (2007). PSEUDOCEREALS – AN OVERVIEW. http://projekt.sik.se/traditionalgrains/review/Oral%20presentation%20PDF%20files/Berghofer%20.pdf.
  17. Bonafaccia G., Marocchini M., Kreft I., (2003). Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem 80, 9-15.
  18. Bressani R., (1994). Composition and nutritional properties of amaranth. In: Paredes Lopez O, editor. Amaranth biology, chemistry and technology. London: CRC Press Inc. pp 185-205.
  19. Chelowski J., (1991). Cereal grain. Mycotoxins, fungi and quality in drying and storage. Developments in Food Science. Elsevier, Amsterdam.
  20. Cordain L., (1999). Cereal Grains: Humanity’s Double-Edged Sword. Simopoulos AP (ed): Evolutionary Aspects of Nutrition and Health. Diet, Exercise, Genetics and Chronic Disease. World Rev Nutr Diet 84, 19–73.
  21. Czerwinski J., Bartnikowska E., Leontowicz H., Lange E., Leontowicz M., Katrich E., Trakhtenberg S. and Gorinstein S., (2004). Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. J Nutr Biochem 15, 622-629.
  22. David O., Arthur E., Kwadwo S.O., Badu E., Sakyi P., (2015). Proximate Composition and Some Functional Properties of Soft Wheat Flour. Int J of Innov Res in Sci, Eng and Tech 4(2), 753-758.
  23. Dubois M., Giles K., Hamilton J.K., Rebers P.A. and Smith F.A., (1956). Colorimetric methods for determination of sugars and related substances. Anal Chem 28, 350-356.
  24. Emire S.A. and Arega M., (2012). Value added product development and quality characterization of amaranth (Amaranthus caudatus L.) grown in East Africa. Afri J of Food Sci and Technol 3(6), 129-141.
  25. Enujiugha V.N., Ayodele-Oni O., (2003). Evaluation of nutrients and some anti-nutrients in lesser-known, underutilized oilseeds. Int J Food Sci and Technol 38, 525–528.
  26. Enyisi I.S., Umoh V.J., Whong C.M.Z., Abdullahi I.O., Alabi O., (2014). Chemical and nutritional value of maize and maize products obtained from selected markets in Kaduna State, Nigeria. Afr. J. Food Sci. Technol 5(4), 100-104.
  27. FAO Canada (2002). FAO, The State of Food Insecurity in the World.
  28. Feli B., Moser S.B., Jampatong S. and Stamp P., (2005). Mineral composition of the grains of Tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci 45, 516-523.
  29. Gorinstein, S., Zemser M., Fliess A., Shnitman I., Parades-Lopez O., Yamamoto k., Kobayashi S. and Taniguchi H., (1998). Computational Analysis of the Amino Acid Residue Sequences of Amaranth and some other Proteins. Biosci Biotech Biochem 62(10), 1845-1851.
  30. Graham L., Ortiz-Monasterio I., Stangoulis J., Robin Graham R., (2005). Selenium concentration in wheat grain. J of Plant and Soil 269(1), 369-380.
  31. Hassan A.B., Osman G.A.M. and Rushdi M.A.H., (2009). Effect of Gamma Irradiation on the Nutritional Quality of Maize Cultivars (Zea mays) and Sorghum (Sorghum bicolor) Grains. Pak J Nutr 8, 167-171.
  32. Hendricks K.M., Duggan C. and Gallagher L., (1995). Malnutrition in hospitalized pediatric patients. Current prevalence. Arch Pediatr Adolesc Med 149 (10), 1118–22.
  33. Holland B., Unwin I.D. and Buss D.H., (1998). Cereals and Cereal Products. Third Supplement to McCance and Widdowson’s The Composition of Foods. Royal Society of Chemistry, Nottingham.
  34. Hoover R., Hughes T., Chung H.J., Liu Q., (2010). Composition, molecular structure, properties, and modification of pulse starches. Food Res Int 43(2), 399-413.
  35. Hussaini M.A., Ogunlela V.B., Ramalan A.A. and Falaki A.M., (2008). Mineral composition of dry season maize (Zea mays L.) in response to varying levels of nitrogen, phosphorus and irrigation at Kadawa, Nigeria. World J Agric Sci 4, 775-780.
  36. Hwang H.R., Kim K.H., Lee J., Chung C.T., Lee J.C., Choi J.J., Chun J.P., Yook H.S., (2009). Comparison of mineral contents of three rice varieties under different cultural practices. J Korean Soc Food Sci Nutr 38, 721–726.
  37. Idris S., Iyaka Y.A., Ndamitso M.M. and Paiko Y.B., (2011). Nutritional Composition of the Leaves and Stems of Ocimum Gratissimum. J Emerging Trends in Engineering and Applied Sciences (JETEAS). 2(5), 801-805.
  38. Ishida H., Suzuno H., Sugiyama N., Innami S., Todokoro T. and Maekawa, (2000). A. Nutritional evaluation of chemical component of leaves stalks and stems of sweet potatoes (Ipomea batatas poir). Food Chem 68, 359-367.
  39. Jacob A., (2005). The Africa executive magazine. A plant full of medicinal values.
  40. Jed W.F., (2005). Johns Hopkins School of Medicine, Department of Pharmacology and Molecular Sciences: “Moringa oleifera”: A Review of the Medical Evidence for Its Nutritional, Therapeutic, and Prophylactic Properties. Part 1. Copyright: ©2005 Jed W. Fahey. Available from http://www.TFLJournal.org/article.php/200512011. Last Accessed on 13 March 2013.
  41. Kachiguma N.A., Mwase W., Maliro M. and Damaliphetsa, A., (2015). Chemical and mineral composition of amaranth (Amaranthus L.) species collected from Central. J Food Res 4(4), 92-102 (502).
  42. Kalac P. and Moudry J., (2000). Chemical composition and nutritional value of amaranth grains (in Czech). Czech J Food Sci 18, 201-206.
  43. Lenntech B.V., (2013). Recommended Daily Intake of Vitamins and Minerals. Rotterdamseweg. Netherlands.
  44. Leon-Camacho M., Garcıa-Gonzalez D.L., Aparicio R., (2001). A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. Euro Food Res Technol 213, 349–55.
  45. Lyons G., Stangoulis J. and Graham R., (2003). High-selenium wheat: bio-fortification for better health. Nutrition Research Reviews 16, 45–60.
  46. Makobo N.D., Shoko M.D. and Mtayira T.A., (2010). Nutrient Content of Vegetable Amaranth (Amaranthus cruentus L) at Different Harvesting Stages. World J Agric Sciences 6(3), 285-289.
  47. Maziya-Dixon B.B., Kling J.G. and Okoruwa A.E., (2000). Physical, Chemical and Water Absorption Characteristics of Tropical Maize Hybrids. Afr. Crop Sci. J 8, 419-428.
  48. McCready R.M., (1970). Determination of starch and dextrins. In Methods in Food Analysis (2nd Ed). A series of monographs ed. 522-557.
  49. McKevith B., (2004). Nutritional aspects of cereals. British Nutrition Foundation. Nutrition Bulletin 29, 111-142.
  50. Mota C., Santos M., Mauro R., Samman N., Matos A.S., Torres D., Castanheira I., (2016). Protein content and amino acids profile of pseudocereals. Food Chemistry 193, 55-61.
  51. Muller O., Krawinkel M., (2005). Malnutrition and health in developing countries. CMAJ 173, 279-286.
  52. Muriuki E.N., Sila D.N. and Onyango A., (2014). Nutritional diversity of leafy amaranth species grown in Kenya. J Applied Biosciences 79, 6818-6824.
  53. National Academy of Sciences, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc (2001).
  54. Ndukwe O.K., Edeoga H.O., Omosun G., (2015). Varietal differences in some nutritional composition of ten maize (Zea mays L.) varieties grown in Nigeria. International J Academic Research and Reflection 3 (5), 1-11.
  55. Nielsen S.S., (2003). Food Analysis (3rd Ed.) New York: Kluwer Academic/Plenum publishers.
  56. Nour A.A.M., Ahmed I.A.M., Babiker E.E., Yagou A.E.A., (2010). Investigations on winter season Sudanese sorghum cultivars: effect of sprouting on the nutritional value. Int J Food Sci Technol 45, 884–890.
  57. O’Brien G.K. and Price M.L., (2008). Amaranth grain and vegetable types. ECHO Technical note. 2, 1-9.
  58. Oburuoga A.C. and Anyika J.U., (2012). Nutrient and Antinutrient Composition of Mungbean (Vigna radiata), Acha (Digitaria exilis) and Crayfish (Astacus fluviatilis) Flours. Pakistan J Nutr 11 (9), 743-746.
  59. Oko A.O., Ugwu S.I., (2011). The Proximate and Mineral Compositions of Five Major Rice Varieties in Abakaliki, South-Eastern Nigeria. Int J Plant Physiol and Biochem 3(2), 25–27.
  60. Oshodi A.A., Ogungbenle H.N. and Oladimeji M.O., (1999). Chemical composition, nutritionally valuable minerals and Functional properties of beniseed, pearl millet and quinoa flour. Int J of Food Sci and Nutr 50, 325-331.
  61. Ozbucak T.B., ErgenAkcin O. and Yalcin S., (2007). Nutrition contents of the some wild edible plants in Central Black Sea Region of Turkey. Inter. J. Natural Engineering Sci 1, 11-13.
  62. Repo-Carrasco-Valencia R., Hellstrom J.K., Pihlava J.M. and Mattila P.H., (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), Kaniwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chem 120, 128-133.
  63. SAS Institute, Statistical Analysis System, (2003). Version 9.1. SAS Institute Inc., Cary, NC, USA.
  64. Shukla S., Bhargava A., Chatterjee A., Srivastava and Singh S.P., (2006). Genotypic variability in vegetable amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years. Euphytica 151, 103-110.
  65. Singh A., Hung Y., Corredig M., Phillips R.D., Chinnan M.S. and McWatters K.H., (2005). Effect of milling method on selected physical and functional properties of cowpea (Vigna unguiculata) paste. Int J Food Sci and Technol 40, 525-536.
  66. Souci S.W., Fachmann W., Kraut H., (1993). Food composition and nutrition tables. Wissenschaft Verlag GmbH, Stuttgart Ruales J, Nair B.M Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food chem 48, 131-136.
  67. Srivastava, (2011). Nutritional quality of some cultivated and wild species of amaranthus L. Int J Pharm Sci and Research 2(12), 3152.
  68. Taylor J.R.N., Belton P.S., Beta T., Duodu K.G., (2014). Increasing the utilization of sorghum, millets and pseudocereals: development in their science of phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci 59, 257-275.
  69. Teutonico R.A., Knorr D., (1985). Amaranth: Composition, properties and applications of a rediscovered food crop. Food Technol 39, 49-61.
  70. Ullah I., Ali M. and Farooqi A., (2010). Chemical and Nutritional Properties of Some Maize (Zea mays L.) Varieties Grown in NWFP, Pakistan. Pakistan Journal of Nutr 9(11), 1113-1117.
  71. Wambugu P.W. and Muthamia Z.K., (2009). The state of plant genetic resources for food and agriculture in Kenya: KARI, National Gene Bank of Kenya.
  72. WHO (World Health Organization), (2013a). Malnutrition-The Global Picture. World Health Organization. Available at http://www.who.int/home-page/. Accessed on 1 January 2013.
  73. WHO (World Health Organization), (2013b). Guidelines: Calcium supplementation in pregnant women. WHO. Geneva.

Cite this Article:

International Journal of Sciences is Open Access Journal.
This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Author(s) retain the copyrights of this article, though, publication rights are with Alkhaer Publications.

Search Articles

Issue June 2023

Volume 12, June 2023


Table of Contents



World-wide Delivery is FREE

Share this Issue with Friends:


Submit your Paper